Revision Topic 3: Chemical Bonding

1(a) What are the main features of the electron pair repulsion model that accounts for the shapes of molecules?

[2

Electron pairs involved in forming either single, double or triple bonds around a central atom are termed as bond pairs. [1/2]

Electron pairs not involved in bond formation are termed as lone pairs. [1/2]

The electron pairs are arranged around the central atom <u>as far apart as possible</u> so as to <u>minimise repulsion</u> between them and <u>maximise stability</u>. [1/2]

<u>Lone pair – lone pair repulsion > lone pair – bond pair repulsion > bond pair – bond repulsion.</u> [1/2]

(b) By considering the number of lone pairs and bonding pairs of electrons, predict the general shapes of the following molecules or ions:

[9]

0	F.0	Н О†	ClF ₄
Species	F ₂ O	H₃O ⁺	
Dot and Cross	∵Ö.	H [*] $\dot{\mathring{H}}$ $\overset{\circ}{H}$	$\begin{bmatrix} & \overset{\times}{F}\overset{\times}{F} \\ & \overset{\cdot}{F}\overset{\cdot}{F} \\ & \overset{\cdot}{F}\overset{\cdot}{F}\overset{\cdot}{F} \\ & \overset{\times}{F}\overset{\times}{F}\overset{\times}{F}\overset{\times}{F}\overset{\times}{F} \\ & \overset{\times}{F}\overset{\times}{F}\overset{\times}{F}\overset{\times}{F}\overset{\times}{F} \\ & & & & & & & & \end{bmatrix}$
Structure			[···~]
en Sandard	F F [1/2]	[1/2]	FF Ci/ F
Explanation	There are 2 bond pairs and 2 lone pairs around the O atom. [1/2] To minimize repulsion, the 4 electrons pairs are directed to corners of a regular tetrahedron	There are 3 bond pairs and 1 lone pair around the O atom. [1/2] To minimize repulsion, the 4 electrons pairs are directed to corners of a regular	There are 4 bond pairs and 2 lone pairs around the Cl atom. [1/2] To minimize repulsion, the 6 electrons pairs are directed to corners of a regular octahedron. [1/2]
	a regular tetrahedron . [1/2]	tetrahedron. [1/2]	Extent of repulsion between lone pair – lone

between <u>lone pair –</u> bond pair > bond pair	pair > lone pair - bond pair > bond pair - bond pair. [1/2]
Bond angle is	Bond angle is compressed to 90° and hence C/F ₃ is square planar [1/2]

[Total: 11 marks]

[3]

2 lodine forms many compounds with different oxidation states. One of the compounds it can form is iodic acid, HIO₃.

Draw a dot-and-cross diagram and the structure for HIO_3 . Using the VSEPR theory, describe the shape and predict the bond angle around the central atom in the HIO_3 molecule.

There are 3 bond pairs and 1 lone pair around I atom. [1/2]

To <u>minimize repulsion and maximize stability</u>, the <u>4 electron pairs</u> are directed to the corners of a <u>tetrahedron</u>. [1/2]

But lone pair-bond pair repulsion > bond pair-bond pair repulsion.

Thus, the bond angle is compressed to 107°.

[1/2]

Thus the shape is trigonal pyramidal around I atom. [1/2]

[Total: 3 marks]

- 3(a) Draw the dot-and-cross diagram for the following species.
 - (i) CaCO₃ (ii) CO

bond and a dative bond:

c≝o

(b) The melting points of CaCO₃ and CO are 825 °C and -205 °C respectively. Account for the difference in melting points in terms of their structures and chemical bonding.

When you draw Ca²⁺, you need not to show the 8 inner shell electrons.

Species	CaCO₃	CO
Melting Point Explanation	CaCO ₃ has a giant ionic lattice structure. [1/2]	CO has a <u>simple molecular</u> structure. [1/2]
·	Large amount of energy is required to overcome the strong electrostatic attraction between the oppositely charged ions [1/2] (Ca²+ and CO₃²-) ⇒ high melting point	Small amount of energy is required to overcome the weak van der Waals' forces of attraction between molecules. [1/2] ⇒ low melting point

(c) CaCO₃ is soluble in water but CO is not. Account for the difference their solubility in water in terms of their structures and chemical bonding.

[2]

		14
Species	CaCO ₃	СО
Solubility in		Hydrogen bonding between water
water	[1/2]	molecules is <u>stronger</u> than the
explanation	The formation of ion-solvent	weak van der Waals' forces of
	bonds/ interactions [1/2]	attraction between hydride-hydride
	results in the release of	and hydride-water molecules. [1/2]
	energy that causes the	These hydride molecules cannot
	detachment of ions [1/2]	penetrate between the water
	from the <u>crystal lattice for</u>	molecules readily and hence
	hydration [1/2]	there is low solubility of these
		hydrides in water. [1/2]

[Total : 6 marks]

[2]

4(a) Under extreme conditions, boron chloride B_2CI_6 can be formed via the dimerisation of BCI_3 . Draw the shape of boron chloride, B_2CI_6 , indicating the likely bond angle. [2]

Indicate correct bond angle -- 109.5° [1] Sketch correctly [1 or 0]

- Dative bond not shown [award 1 mark]
- Arrow point in wrong direction [0]
- Wrong shape but correct bonding [0]
- (b) State the nature of the chemical bond that leads to the formation of B₂Cl₆ and briefly describe its formation. [2]
 - B in BC/3 is electron deficient (or only has 6 electrons around it) / B has the availability of empty orbital[1/2] to accept the lone pair of electrons from C/
 [1/2] in another BC/3 molecule[1/2] via a dative bond to attain the stable octet configuration. [1/2]

[Total: 4 marks]

- 5(a) When a negatively charged rod is held near trichlorosilane, $SiHCl_3$, which is being released from a burette in a slow steady stream, the liquid stream is deflected.
 - (i) Account for the deflection that is observed.

- SiHCl₃ is a <u>polar</u> molecule since its <u>net dipole moment is non-zero</u>. [1/2]
- There is <u>electrostatic forces of attraction between the charged poly(ethene) rod</u> <u>and the oppositely-charged end of the dipole in CHCl₃ molecule, causing the CHCl₃ liquid stream to be deflected. [1/2]</u>
- (ii) Suggest, with reasoning in terms of their chemical structures and bonding, the relative boiling points of trichlorosilane and chlorosilane, SiH₃Cl.

SiHCl₃ has a higher boiling point than SiH₃Cl [1/2]

- Both have <u>simple molecular structures</u> with <u>intermolecular Van der Waals'</u>
 forces of attraction [1/2]
- Size of electron cloud: SiHCl₃ > SiH₃Cl [1/2]
- Extent of distortion of the electron cloud: SiHCl₃ > SiH₃Cl [1/2]
- Extent of Van der Waal's attraction : SiHCl₃ > SiH₃Cl [1/2]
- Energy requirement to overcome van der Waal's attractions between molecules: SiHCl₃ > SiH₃Cl [1/2] [4]
- (b) Silicon carbide, with empirical formula SiC, is a ceramic material. Its chemical structure consists of alternating carbon and silicon atoms in a diamond-like structure.
 - (i) Would you expect silicon carbide to have a high or low melting point? Explain your answer in terms of its chemical structure and bonding.
 - SiC is expected to have a <u>very high melting point [1/2]</u>
 - It has a giant molecular structure [1/2]
 - <u>Large amount of energy</u> [1/2] required to <u>overcome the extensive covalent</u> <u>bonding between the atoms in a giant 3-dimensional structure.</u> [1/2]
 - (ii) Suggest why silicon carbide could be used as a coating for engineering components in terms of its physical property other than its high melting point.
 - SiC is <u>extremely hard</u>

either one [1/2]

- · It can withstand considerable wear and tear
- (iii) Silicon carbide is not suitable for use as a machinery lubricant. Explain why graphite might be suitable for this purpose in terms of its chemical structure and bonding.
 - Graphite is <u>slippery</u> [1/2]
 - It has a giant molecular layered structure [1/2]
 - The adjacent layers are held together by weak Van der Waals' forces of attraction and can easily slide over one another. [1/2]

(iv) Silicon carbide is a non electrical conductor however rubidium is a electrical conductor. Account for the observation.

	SiC	Rb
	SiC has a giant molecular structure. [1/2]	Rb has a giant metallic structure. [1/2]
•	It is a non-conductor due to the absence of delocalised electrons and free mobile ions [1/2]	It is a good conductor due to the presence of <u>delocalised electrons.</u> [1/2]

[6] [Total : 10 marks]

[3]

6 The table below gives the boiling points of the hydride of nitrogen and two other hydrides of Group V.

Compound	Boiling point / ° C
NH ₃	- 33.4
PH ₃	- 87.7
AsH ₃	- 60 °C

(a) Explain with an aid of a suitable diagram why NH₃ has a higher boiling point than PH₃.

- Both NH₃ and PH₃ have simple molecular structures. [1/2]
- Since hydrogen bonds are stronger than the Van der Waals' force, [1/2]
- A larger amount of energy is required to overcome the hydrogen bonds between the NH₃ molecules compared to the weak van der Waals' forces between PH₃ molecules.
 [1/2]
- (b) State and explain whether NH_3 has a smaller or larger bond angle than PH_3 . [2]
 - NH₃ has a larger bond angle than PH₃ [1/2]
 - N is more electronegative than P. [1/2]
 - Therefore the <u>electrons pairs are drawn closer to N</u> compared to P. [1/2]
 - Hence, the <u>bond pairs (N H) experience</u> <u>greater repulsion</u> from one another in NH₃ compared to P H bond in PH₃. [1/2]

[Total: 5 marks]

Antimony, Sb, is in Group V of the Periodic Table. It forms a series of salts which contain the SbF₅ⁿ⁻ anion, one of which is shown below.

Deduce the total number of electrons around the antimony atom, the value of n, and the oxidation number of Sb in this ion.

[2]

Since it is a <u>square-based pyramid</u>, the ion should consist of <u>5 bond pairs</u> and <u>1 lone</u> <u>pair</u> of electrons around the Sb atom. [1/2]

Total number of electrons around the central atom Sb = 12 [1/2]

To obtain the anion, electrons should be added to F since F is the more electronegative element.

Sb is in Group $V\Rightarrow 2$ electrons used for lone pair, and 3 bonding electrons available to bond with 3 F atoms

- ⇒ 2 other F atoms are dative-bonded to Sb have stable octet configuration
- ⇒ Each of the 2 other F atoms have accepted 1 electron each
- \therefore n = 2 [1/2] (explanation not required)

Let the oxidation number of Sb in this ion be x.

x + 5(-1) = -2

X = +3 [1/2]

[Total : 2 marks]