Revision Topic 2: Atomic Structure

- The artificially produced isotope of cobalt, ${}^{60}_{27}Co$, is used as a source of x-rays in medical 1 radiotherapy.
- Define the term isotope. (a) Ìή

Isotopes are atoms of the same element which contain the same number of protons but different number of neutrons. [1]

- Write the full electronic configuration of cobalt ion, ${}^{60}_{27}Co^{2\,+}$. (b)
- [1] $\frac{60}{27}Co^{2+}$: 1s²2s²2p⁶3s²3p⁶3d⁷ [1]
- In an experiment, a sample of cobalt was vaporised, ionised and passed through an (c) electric field. Analysis of the deflection occurring at the electric region revealed the following data for a sample of $\frac{60}{27}Co^{2+}$ charged ions. It was observed that a beam of $^{60}_{27}Co^{2+}$ gives an angle of deflection of 4°.

- [½] for correct deflection upon entering field for Co²⁺ [½] for correct deflection upon entering field for P³ [½] for angle of P³⁻ being slightly greater than that of Co²⁺

- Sketch on the above diagram to show how the beam of ${}^{60}_{27}Co^{2}$ is deflected. State (i) its angle of deflection clearly on the diagram.
- Predict with reasoning and sketch on the above diagram the angle of deflection for (ii) a sample of $^{31}_{15}P^{3-}$. (Ans :11.6°)

[3]

 $^{31}_{15}P^{3-}$ is <u>negatively charged</u>. Hence, the beam of $^{31}_{15}P^{3-}$ will be deflected towards the <u>positive potential</u>. [½]

The angle of deflection $\propto \frac{q}{m}$ ratio.

$$\frac{q}{m} \text{ of } \frac{60}{27}Co^{2+} = \frac{2}{60}$$

$$\frac{q}{m} \text{ of } \frac{31}{15}P^{3-} = \frac{3}{31}$$
[1/2]

Since the beam of ${60\over 27}Co^{2+}$ has an angle of deflection of 4°, hence the angle of

deflection for
$$_{15}^{31}P^{3-} = (4 \div \frac{2}{60}) \times \frac{3}{31} = \underline{\text{11.6°}} \text{[1/2]* 1 dp}$$

The Group II metals have generally higher melting points than Group I metals.

One factor that contributes towards the higher melting points of Group II metals is due to the smaller inter-atomic distances between adjacent metallic ions in the metallic lattice structure.

(a) Explain, in terms of ionization energy, why there is smaller inter-atomic distance in the metallic lattice structure of Group II elements such as magnesium as compared with that of Group I element such as sodium.
121

Comparing Sodium, Na and Magnesium, Mg:

The nuclear charge of Mg > nuclear charge of Na

The electrons of Mg are added to the same outer shell, 3s.

The increase in nuclear charge outweighs the negligible increase in shielding effect. [1/2]

Hence the effective nuclear charge of the Mg > Na. [1/2]

There is a <u>stronger electrostatic force of attraction</u> <u>between the nucleus</u> and <u>valence electrons in Mg. . [1/2]</u>

<u>Valence electrons of Mg are closer to the nucleus</u>[1/2], hence <u>atomic radius of Mg \leq Na.</u>

Therefore, the inter-atomic distance in the metallic lattice structure of Group II elements such as Mg is smaller than that in Group I elements such as Na.

(b) Rubidium is a Group I metal. Write the electronic configuration of rubidium.

$$_{37}Rb$$
: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s¹ marks1

[1]

[Total: 3

The graph below shows the first eight successive ionisation energies of **X** against the order of removal of electrons.

(a) From the graph, deduce which group of the periodic table does element X [2] belongs to.

Removing the 4th valence electron <u>requires a vast amount of energy</u>./ There is a <u>large jump</u> from the <u>3rd to 4th IE.</u> [½]

The 4^{th} electron is removed from an inner shell [1/2] / There are 3 valence electrons. [1/2]

Therefore, element X is from group III. [1/2]

(b) Given that element X is from period 3, identify element X.

[1]

X is aluminium. [1/2]

(c) Explain whether X or the element below X in the same group will have higher [2] first ionization energy.

Electrons are added to the next valence shell. [1/2]

The <u>distance</u> between the nucleus and the valence electrons <u>increases</u>. [½] <u>Decrease in electrostatic forces of attraction</u> between the nucleus and valence electrons. [½]

Less energy needed to remove the valence electron, thus 1st I.E. decreases.

Element X will have a higher first ionization energy.

[Total: 5 marks]

4 The table below shows the first ionization energies and the second ionization energies of the elements from nitrogen to calcium.

Element	First ionisation energy / kJ mol ⁻¹	Second ionisation energy / kJ mol ⁻¹
N	1400	2860
0	1310	3390
F	1680	3370
Ne	2080	3950
Na	494	4560
Mg	736	1450
Al	577	1820
Si	786	1580
Р	1060	1900
S	1000	2260
CI	1260	2300
Ar	1520	2660
K	418	3070
Ca	590	1150

(a) Write one equation, with state symbols, which represents the first and second ionisation energies of calcium.

[1]

Ca (g)
$$\Rightarrow$$
 Ca²⁺(g) + 2e⁻ [1] No state symbols [0]

(b) Explain why there is a sudden decrease in the first ionisation energy after neon by writing appropriate electronic configurations.

- From Ne to Na, significant increase in shielding effect outweighs the increase in nuclear charge. [1/2]
- Effective nuclear charge of Na < Ne[1/2]
- Less energy is required to remove the <u>valence electrons from Na compared to Ne.</u>
 [1/2]
- (c) Explain why the second ionisation energy of silicon is lower than aluminium.

The second ionisation energy corresponds to removal of 3p electron for Si⁺ and 3s electron for Al⁺. Greater amount of energy is required to remove the 3s electron in Al⁺ which is closer to the nucleus compared to the 3p electron in Si⁺ [1] as it experiences greater electrostatic attraction to the nucleus[1]

[2]

[2]

(d) Explain why the second ionisation energy of sulphur and chlorine .

[2]

 $S^+: 1s^22s^22p^63s^23p^3$ $Cl^+: 1s^22s^22p^63s^23p^4$

USE ENC

- Inter-electron repulsion is predominant in the doubly filled 3p orbital of Cl⁺ / between paired electrons in the 3p orbital of Cl⁺.[1]
- Hence less energy is required to remove the valence electron from Cf.[1]
- (e) Draw the energy level diagram for Ca⁺.

[1]

[1 or 0]

[Total: 8 marks]