H2 Chemistry Enrichment Nitrogen Compounds | Na | ame: | | Marks: | /20 | |----|-------|---|--------------|-----| | C | Γ Gro | up: | Duration: 3 | | | Ar | ıswe | r all the questions. | | | | 1. | How | would you expect the p K_b value of | | | | | (a) | C ₂ H ₅ NH ₂ to compare with that of (CH ₃) ₂ NH | | [2] | | | | $(CH_3)_2NH + H_2O \leftrightarrows (CH_3)_2NH_2^+ + OH^-$ | | | | | | √ The basicity of alkylamines increases with the number groups attached to N. √ The electron-donating alkyl groups inductively increases electron density on the N atom in RNH₂, √ making the lone pair on N more available to accept the N the equilibrium above lies more to the right hand side, K_b is higher, hence its pK_b will be lower. | s the
⊣⁺. | | | | (b) | $C_2H_5NH_2$ to compare with that of $C_6H_5NH_2$ | | [2] | | | | C₆H₅NH₂ is a weaker base and hence a larger pK_b value. This is because the lone pair on the N atom in C₆H₅NH₂ the pi orbitals of the benzene ring, making it less available. | | | | | (c) | 2-chloroethylamine with that of ethylamine | | [2] | | | | • 2-chloroethylamine is a weaker base and hence a larger √ since C <i>l</i> atom is electron-withdrawing by the inductive ef √ the lone pair on the N atom less available to accept H ⁺ the ethylamine. | fect, making | | - 2. Benzocaine can be made by the following reaction scheme, starting from methylbenzene. - (a) Fill the intermediate products **A** and **B** in the boxes below. - (b) State the reagents and conditions are used for each of the stages I and II. - (i) Stage I C₂H₅OH, concentrated H₂SO₄ (catalyst), reflux - (ii) Stage II Sn, concentrated HCl, reflux, then add aqueous NaOH [2] [2] - **3.** An aqueous solution of **A**, of molecular formula C₃H₇NO₂, is neutral to litmus. On warming A with NaOH(aq), NH₃(g) is evolved. **A** gives white fumes with SOC*l*₂. On refluxing **A** with aqueous acidified potassium dichromate, propanedioic acid, HO₂CCH₂CO₂H is obtained. - (a) State the deductions that can be made about A from the above observations. [3] | Property of A | Deduction of A | | |---|---|--| | (i) Gives NH₃(g) with NaOH(aq) | -CONH ₂ present | | | (ii) Gives white fumes with SOCl2 | -OH group present | | | iii) Gives propanedioic acid,
HO ₂ CCH ₂ CO ₂ H, on refluxing with
aqueous acidified potassium
dichromate | √ Primary alcohol is oxidized to a carboxylic acid. | | | | √ Amide is hydrolysed to a carboxylic acid. | | (b) Hence, give the structural formula of A. [1] (c) This compound A, with molecular formula of C₃H₇NO₂, can be prepared from the reaction between an acyl chloride and ammonia. Write a balanced equation for this reaction and draw the structural formula of the acyl chloride involved in the reaction. [2] **4.** State the possible R group interactions that can exist in a polypeptide chain that contains the following amino acid residues. | Amino acid | Abbreviation | R group | R group interactions | |---------------|--------------|---|---| | Aspartic acid | asp | - CH₂COOH | Ionic bonds with positively charged groups OR Hydrogen bonds with groups containing –OH or –NH bonds | | Serine | ser | - CH₂OH | Hydrogen bonds with groups containing –OH or –NH bonds. | | Lysine | lys | - CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ | Ionic bonds with negatively charged groups OR Hydrogen bonds with groups containing –OH or –NH bonds | | Cysteine | Cys | -CH₂SH | Disulfide bonds with groups containing SH bonds |