

Summary

Points to include in your answers when explain deductive organic questions:

- ✓ <u>Functional group</u> involved in the reaction
- ✓ <u>Type of reaction</u>
 ✓ Identification of unknown gas or ppt formed
- ✓ Identification of <u>functional groups formed</u> (if any)
- ✓ Fully balanced equations if necessary

Eg: E has a alcohol functional group which undergoes elimination to from alkene F

List of common reagents:

Reagents	Observation	Deduction
Br ₂ in UV light	Decolourisation of reddish	Alkane
	brown Br ₂	Alkyl benzene
Br_2 in CCl_4 , dark room	Decolourisation of reddish	Alkene
	brown Br ₂	
Aq Br ₂	Decolourisation of reddish	Alkene
	brown Br ₂	
	Decelourisation of reddish	Bhanal
	brown Br_2 White pot in xs	Phenylamine
Br _a with anhydrous FeBr _a	Decolourisation of reddish	Benzene
	brown Br ₂	Substituted Benzene
Hot acidified KMnO₄	Purple KMnO ₄ decolourises	Primary or Secondary
	•	alcohol
		Aldehyde
		Alkene with
		monosubstituted or
		disubstituted C=C bond
	Purple KMpQ decelourises	Terminal alkono
	CO_1 evolved	
		HCOOH
	Purple KMnO₄ decolourises	Methylbenzene
	White ppt on cooling	-
	Purple KMnO ₄ decolourises	Alkylbenzene
	CO ₂ evolved	Benzene with side chain
Cold dilute KMaQ	White ppt on cooling	
		AIKENE
Hot acidified K ₂ Cr ₂ O _{7,} distill	Orange solution turns green	Primary alcohol
Hot acidified K ₂ Cr ₂ O ₇	Orange solution turns green	Primary and secondary
		alcohol
		Aldehyde
Aq NaOH, r.t.p	-	Phenol
Ag NaOll, beat	NUL evelved	Larboxylic Acid
Aq NaOH, neat	NH3 EVOLVED	Nitrile Brimany amida
l	1	Primary amide

Done By: KaiJie, Elias, ChenXi, Ashwini, Sahana, Kelly from 0901 and 0914 Compiled from 2007 and 2008 H2 Chemistry Prelim Papers

Reagents	Observation	Deduction
Aq NaOH, heat	-	Secondary or Tertiary amide
	-	Alkyl Halide
Alcoholic NaOH, heat	-	Alkyl Halide
Conc. H_2SO_4 , r.t.p	-	Alkene
XS Conc. H_2SO_4 170 ^o C	-	Alcohol
Conc. H_2SO_{4} , heat		If reagent present is ROH,
	-	RCOOH is present (vice
		versa)
Dilute H ₂ SO ₄		Ester
	-	Amide
		Nitrile
Dilute H ₂ SO ₄	White crystalline solid formed	Amine
Aq alkaline I2	Yellow ppt of CHI ₃ formed	Methyl ketone
		Methyl alcohol
Anhydrous PCl₅ or SOCl₂	White fumes of HCl	Alcohol
		Carboxylic acid
LiAlH₄ in dry ether		Aldehyde
		Ketone
	-	Carboxylic Acid
		Nitrile
		Esters
		Amide
Sn in conc HCl followed by NaOH	-	Nitrobenzene
Excess ethanolic NH ₃ , heat in	-	Alkyl halide
sealed tube		
2,4-dinitrophenylhydrazine	Orange ppt is formed	Ketone
		Aldehyde

The Unsaturation Rule:

Degree of Unsaturation= $\frac{1}{2}[(2n+2)-(H+X - N)]$

where:

- n is the number of carbon atoms
- H is the number of hydrogen atoms
- X is the number of halogen atoms
- N is the number of nitrogen atom

Note:

- ✓ Ring count as one degree of unsaturation
- ✓ Double bonds count as one degree of unsaturation
- ✓ Triple bonds count as two degree of unsaturation.

Q1.YJC Prelim 2007/P3/Q1(c) A has the molecular formula C₉H₁₀Cl₂.

When compound **A** is treated with hot ethanolic sodium hydroxide, a compound **B** is formed which decolourises aqueous bromine. When compound **A** is heated with aqueous sodium hydroxide, a compound **C** is formed which rapidly loses a water molecule to form compound **D**. Compound **D** gives an orange precipitate with 2,4-dinitrophenylhydrazine. When compound **A** is treated with hot acidified potassium manganate (VII), a white precipitate **E**, $C_9H_8Cl_2O_2$, is observed.

Give the possible structures of compounds **A**, **B**, **D** and **E**.

[4]

Q2. PJC Prelim 2008/P3/Q3(d)

An organic compound **P**, $C_{10}H_{11}O_2Br$, does not react with aqueous sodium carbonate. **P** reacts slowly on heating with aqueous sodium hydroxide, followed by acidification to form an optically active compound **Q**, and an insoluble oil **R**, C_7H_8O . **R** gives benzoic acid on oxidation. One mole of **Q** reacts with two moles of phosphorus pentachloride to give steamy fumes.

Deduce the structures of compounds **P**, **Q** and **R**. Explain the chemistry of the reactions described, writing equations where appropriate. [7]

Q3. VJC Prelim 2008/P3/Q3(d)

When an organic halogen compound W, $C_{10}H_9O_3Br$, is boiled with aqueous sodium hydroxide followed by acidification, it gives two compounds, one of which has the following structure shown below.

When sodium hydrogencarbonate is added to the other compound X, effervescence of carbon dioxide is observed. In addition, X gives a yellow precipitate on warming with alkaline aqueous iodine. When X is treated with an ethanolic solution of NaBH₄, it gives **Y.** Heating **Y** in the presence of an acid catalyst gives a sweet-smelling liquid, \mathbf{Z} , C₆H₈O₄.

Deduce the structures for each lettered compound, W to Z, and give an account of the chemistry involved.

[10]

Series Chemistry Café: Deductive Organic

Q4. AJC Prelim 2008/P3/Q4(b)

This question is about the neutral compound \mathbf{D} , C₈H₇ON.

On heating **D** with dilute hydrochloric acid, only compound **E** ($C_8H_9O_2N$) is obtained.

E is soluble in dilute sulphuric acid, aqueous sodium carbonate and aqueous sodium hydroxide. **E** also reacts with lithium aluminium hydride to give **F** ($C_8H_{11}ON$). **F** is no longer soluble in sodium carbonate and aqueous sodium hydroxide but is still soluble in dilute sulphuric acid.

On passing **F** over hot Al_2O_3 , **G** (C_8H_9N) is produced. Heating **G** with alkaline potassium manganate(VII) gives **H** ($C_7H_6NO_2Na$) together with the evolution of a gas.

H can also be synthesised by treating 2-nitrobenzoic acid with tin and concentrated hydrochloric acid followed by NaOH(aq).

Deduce the structures of compounds D, E, F, G and H, and explain the reactions involved. [10]

Answers

Q1.YJC Prelim 2007/P3/Q1(c)

Q2. PJC Prelim 2008/P3/Q3(d)

P has an <u>ester functional group</u> hence it undergoes <u>alkaline hydrolysis</u> on heating with aqueous NaOH to give <u>2 products</u> which upon acidification, it forms the <u>alcohol</u> <u>functional group in R</u> and the <u>carboxylic acid functional group in Q</u>.

The <u>C-Br group</u> on P also undergoes <u>nucleophilic substitution</u> on heating with aqueous NaOH to form <u>an alcohol functional group</u> which is found on Q.

Q is optically active as it has a chiral carbon atom attached to 4 different groups.

R has a <u>-CH₂OH group</u>, attached to the benzene ring, which undergoes <u>oxidation</u> to form <u>the benzoic acid</u>

Q has an <u>alcohol and carboxylic functional group</u> hence it undergoes <u>substitution</u> with <u>2</u> <u>moles of PCl_5 </u>. The white fume released is <u>HCl</u>.

Q3. VJC Prelim 2008/P3/Q3(d)

W has an ester functional group hence it undergoes alkaline hydrolysis to form the

carboxylic acid group in X and the phenol functional group in

W has a **<u>C-Br group</u>** which undergoes <u>electrophilic substitution</u> when boil with aqueous

NaOH to form a primary alcohol functional group seen in

X has <u>carboxylic functional group</u> which undergoes <u>acid-base reaction</u> with NaHCO₃ thus CO_2 is observed.

X is a <u>methyl ketone</u> thus undergoes <u>oxidation</u> in presence of alkaline aqueous iodine to give a <u>yellow ppt of CHI_3 </u>

X has a <u>ketone functional group</u> which undergoes <u>reduction</u> when treated with ethanolic NaBH₄, forming the <u>alcohol functional group</u> in Y.

When heated in presence of an acid catalyst, <u>2 molecules</u> of Y undergo <u>condensation</u> reaction to form Z which has <u>2 ester functional groups</u>.

Q4. AJC Prelim 2008/P3/Q4(b)

D is a neutral compound as it <u>does not</u> have a <u>carboxylic acid, phenol, amine or</u> <u>phenylamine functional group</u>.

E is soluble in dilute H_2SO_4 as it has a <u>phenylamine group</u> thus is able to undergo <u>acid-base reaction</u> with dilute H_2SO_4 .

E having a <u>carboxylic functional group</u>, is able to undergo <u>acid-base reaction</u> with aqueous Na_2CO_3 and aqueous NaOH, thus is soluble in both reagents.

E has a <u>carboxylic functional group</u> which undergoes <u>reduction</u> in presence LiAlH₄ in dry ether to form a <u>primary alcohol group</u> in F.

F does not have react with Na_2CO_3 as it does not have a carboxylic functional group.

F does not react with NaOH due to absence of carboxylic acid and phenol functional group.

F reacts with dilute H_2SO_4 due to presence of phenylamine functional group.

F with the <u>alcohol functional group</u>, undergoes <u>elimination</u> when passed over hot Al_2O_3 to form the <u>alkene functional group</u> in G.

G has a <u>alkene functional group</u> which undergoes <u>oxidation</u> in presence of alkaline $KMnO_4$ to form the <u>carboxylic functional group in H</u>. Gas release is CO_2 due to presence of <u>terminal alkene</u>

When treated with tin and concentrated HCl followed by addition of NaOH. the <u>nitrobenzene functional group</u> in 2-nitrobenzene undergoes <u>reduction</u> to form the <u>phenylamine functional group</u> in H.

Done By: KaiJie, Elias, ChenXi, Ashwini, Sahana, Kelly from 0901 and 0914 Compiled from 2007 and 2008 H2 Chemistry Prelim Papers