

CATHOLIC JUNIOR COLLEGE H2 MATHEMATICS JC2 PRELIMINARY EXAMINATION PAPER I 2013

Assessment Objectives	Solution		Feedback
 To use a system of linear equations to model and solve practical problems To find the numerical solution of a system of linear equations using a graphic calculator. 	$y = ax + b + \frac{c}{x+3} \dots (*)$ $\frac{dy}{dx} = a - \frac{c}{(x+3)^2}$ Substituting the <i>x</i> - and <i>y</i> -coordinates into eqn (*),	[M1]	
• To perform basic differentiation and make use of the fact that gradient of a curve		[M ¹ /2]	
is 0 at turning points.	$\left(2, \frac{1}{4}\right): 2a+b+\frac{1}{5}c=\frac{1}{4}$ (2)	[M ¹ /2]	
	Since there is a turning point at $\left(2, \frac{1}{4}\right)$,		
	$x = 2$ would be a solution to $\frac{dy}{dx} = 0$.		
	$\Rightarrow a - \frac{1}{25}c = 0 \dots (3)$	[M1]	
	Solving with G.C., $a = \frac{1}{4}$ (or 0.25)		
	$b = -\frac{3}{2}$ (or - 1.5)	[A1]	Subtract ¹ / ₂ for every error.
	$c = \frac{25}{4}$ (or 6.25)		

Techniques of Integration Assessment Objectives	Solution		Feedback
• Able to interpret $\int_{a}^{b} f(x) dx$ as the area under the curve $y = f(x)$	Note: $ x-c = \begin{cases} x-c, & \text{if } x \ge c \\ c-x, & \text{if } x < c \end{cases}$		
between $x = a$ and $x = b$ [HOT]	$\int_{-c}^{0} x - c dx = \int_{-c}^{0} c - x dx$	[M ¹ / ₂]	
	$= \left[cx - \frac{x^2}{2} \right]_{-c}^{0}$	[M ¹ /2]	
	$= -\left[c(-c) - \frac{(-c)^2}{2}\right]$		
	$=c^{2}+\frac{1}{2}c^{2}$		
	$=\frac{3}{2}c^2$	[A ¹ /2]	
	$\int_{0}^{2c} x - c dx = \int_{0}^{c} c - x dx + \int_{c}^{2c} x - c dx$	[M ¹ / ₂]	
	$= \left[cx - \frac{x^2}{2}\right]_0^c + \left[\frac{x^2}{2} - cx\right]_c^{2c}$	[M ¹ /2]	
	$= c^{2} - \frac{c^{2}}{2} + \left(\frac{4c^{2}}{2} - 2c^{2}\right) - \left(\frac{c^{2}}{2} - c^{2}\right)$		
	$=c^{2}$	[A ¹ /2]	
	$\int_{-c}^{0} x-c dx = k \int_{0}^{2c} x-c dx \Leftrightarrow \frac{3}{2}c^{2} = kc^{2}$		
	$\therefore k = \frac{3}{2}$	[A1]	

Alternative:		
$y = x-c $ $y = x-c $ $-c$ c A_1 A_2 A_3 z x	[B1]	
$\int_{-c}^{0} x - c dx = k \int_{0}^{2c} x - c dx$ Area $A_1 = k$ (Area A_2 + Area A_3) $\frac{1}{2}c(2c + c) = k \left(\frac{1}{2}c(c) + \frac{1}{2}c(c)\right)$ $\frac{1}{2}(3c^2) = kc^2$	[M2]	
$k = \frac{3}{2}$	[A1]	

3	Mathematical Induction			
	Assessment Objectives	Solution	T	Feedback
		Let P_n be the statement $\sum_{r=1}^n r(3r-2) = \frac{n}{2}(n+1)(2n-1)$ for $n \in \mathbb{Z}^+$	[B ¹ /2]	
		When $n = 1$: L.H.S. $= 1(3 - 2) = 1$		
		R.H.S. = $\frac{1}{2}$ (2)(1) = 1		
		\therefore P ₁ is true and this forms the basis for induction.	[M1]	
		Assume \mathbf{P}_k is true for some $k \in \mathbb{Z}^+$,		
		i.e. $\sum_{r=1}^{k} r(3r-2) = \frac{k}{2}(k+1)(2k-1)$	[M1]	
		R.T.P P _{k+1} is true, i.e. $\sum_{r=1}^{k+1} r(3r-2) = \frac{(k+1)}{2}(k+2)(2k+1)$		
		L.H.S. = $\sum_{r=1}^{k+1} r(3r-2)$		
		$= \sum_{r=1}^{k} r(3r-2) + (k+1)[3(k+1)-2]$	[M1]	
		$=\frac{k}{2}(k+1)(2k-1) + (k+1)(3k+1)$		
		$= \frac{(k+1)}{2} [k(2k-1) + 2(3k+1)]$		
		$=\frac{(k+1)}{2}(2k^2-k+6k+2)$		
		$=\frac{(k+1)}{2}(2k^2+5k+2)$	[A1]	
		$=\frac{(k+1)}{2}(k+2)(2k+1) = \text{R.H.S.}$		
		\mathbf{P}_k true $\Rightarrow \mathbf{P}_{k+1}$ is also true		
		Since P_1 is true, hence by MI, P_n is true for $n \in \mathbb{Z}^+$.	[B ¹ / ₂]	

Assessment Objectives	Solution		Feedback
• To manipulate and solve inequalities of the form $\frac{f(x)}{g(x)} > 0$ where $f(x)$ and $g(x)$ are quadratic expressions that are either factorisable or always positive.	$\frac{x+4}{3+2x-x^2} < 1 \dots (*)$ $\frac{x+4}{3+2x-x^2} - 1 < 0$ $\frac{x+4}{3+2x-x^2} - \frac{3+2x-x^2}{3+2x-x^2} < 0$	[M1]	
	$\frac{x^2 - x + 1}{3 + 2x - x^2} < 0$ $\frac{x^2 - x + 1}{x^2 - 2x - 3} > 0$	[M1]	
	Since $x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4} > 0$ for any real x (OR coefficient of $x^2 = 1 > 0$ and discriminant, $b^2 - 4ac = (-1)^2 - 4(1)(1) = -3 < 0$ imply that $x^2 - x + 1 > 0$ for any real x) Award 1 mark as long as student indicates 'numerator always positive'.	[M1]	
	$\frac{1}{x^2 - 2x - 3} > 0$ $\frac{1}{(x+1)(x-3)} > 0$	[M1]	
	$\xrightarrow{+ \qquad -1 \qquad 3} x x < -1 \text{ or } x > 3$	[A1]	

To deduce the solution of an inequality by making suitable	By replacing x with $\left(-x^2\right)$ in (*), we have:	[M1]
substitution from an inequality solved previously. [HOT]	$\frac{-x^2+4}{3-2x^2-x^4} < 1$	
	$\frac{x^2 - 4}{x^4 + 2x^2 - 3} < 1$ which is what we need to solve.	
	From earlier part, $-x^2 < -1$ or $-x^2 > 3$ (N.A., since $-x^2 \le 0$	
	$x^2 > 1$ for all real x)	[A1]
	x < -1 or $x > 1$	r

Recurrence Relations			
Assessment Objectives	Solution		Feedback
 To use G.C. to find the root To recognise that when sequence converges, x_{n+1} = x_n (Ability to use the given alattab) 	(i) $\alpha = 1.873$ (ii) For a sequence to converge, as $n \to \infty$, $x_n \to l$ and $x_{n+1} \to l$. $x_{n+1} = \ln \left[3 + (x_n)^2 \right]$	[B1]	
sketch)	$l = \ln(3 + l^{2})$ $e^{l} = 3 + l^{2}$ $3 - e^{l} + l^{2} = 0$	[B1]	
	$\Rightarrow l = \alpha \text{ (proved)}$	[B 1]	
[HOT]	(iii) Consider $e^{x_{n+1}} - e^{x_n} = e^{\ln[3 + (x_n)^2]} - e^{x_n}$ = $3 + (x_n)^2 - e^{x_n}$	[B1]	
	If $x_n < \alpha$, $y > 0$ $3 - e^{x_n} + x_n^2 > 0$	[B ¹ /2]	
	$e^{x_{n+1}} > e^{x_n}$ $x_{n+1} > x_n$ (proved)	[B ¹ /2]	
	If $x_n > \alpha$, $y' < 0$ $3 - e^{x_n} + x_n^2 < 0$	[B ¹ /2]	
	$e^{x_{n+1}} < e^{x_n}$ $x_{n+1} < x_n \text{ (proved)}$	[B ¹ /2]	

[HOT]	(iv)	When $x_1 = 0$, the sequence increases and converges to 1.873 (i.e. α).	[B1]	
		When $x_1 = 3$, the sequence decreases and converges to		
		1.873 (i.e. <i>α</i>).	[B1]	
		$x_1 = 0$ satisfies $x_1 < \alpha$, thus $x_{n+1} > x_n$		
		i.e. the sequence increases and converges to $lpha$.	[B ¹ / ₂]	
		$x_1 = 3$ satisfies $x_1 > \alpha$, thus $x_{n+1} < x_n$		
		i.e. the sequence decreases and converges to α .	[B ¹ / ₂]	

6	Sigma Notation/ Method of Difference			
	Assessment Objectives	Solution		Feedback
		$\frac{1}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{(r+1)} + \frac{C}{(r+2)}$ $1 = A(r+1)(r+2) + Br(r+2) + Cr(r+1)$	[M ¹ /2]	
		Substituting $r = 0$, $A = \frac{1}{2}$ Substituting $r = -1$, $B = -1$		
		Substituting $r = -2$, $C = \frac{1}{2}$	[A1½]	
	• To express in partial fractions & to use recurrence to solve the problem	(a) $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{2}(1) - \left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{3}\right) + \frac{1}{2}\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + $		
		$+\frac{1}{2}\binom{1}{3} - \binom{1}{4} + \frac{1}{2}\binom{1}{5} + \dots$		
		$+ \frac{1}{2} \left(\frac{1}{n-2} \right) - \left(\frac{1}{n-1} \right) + \frac{1}{2} \left(\frac{1}{n} \right) $ $+ \frac{1}{2} \left(\frac{1}{n-1} \right) - \frac{1}{2} + \frac{1}{2} \left(\frac{1}{n-1} \right) $	[M1]	
		$\frac{2(n-1)}{n} \frac{2(n+1)}{2(n+1)} + \frac{1}{2}\left(\frac{1}{n+1}\right) - \left(\frac{1}{n+1}\right) + \frac{1}{2}\left(\frac{1}{n+2}\right)$		
		$=\frac{1}{4} - \frac{1}{2} \left(\frac{1}{n+1}\right) + \frac{1}{2} \left(\frac{1}{n+2}\right)$	[A1]	

• To apply Sigma notation to the problem and to find Sum to infinity	(b)(i) $\sum_{r=2}^{\infty} \frac{1}{r(r+1)(r+2)}$ $= \sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)} - \frac{1}{1(1+1)(1+2)}$ $= \frac{1}{4} - \frac{1}{6}$	[M1]
	$=\frac{1}{12}$	[A1]
• To link to previous part by a suitable substitution. [HOT]	(ii) $\sum_{r=3}^{\infty} \frac{1}{r(r^2 - 1)} = \sum_{r=3}^{\infty} \frac{1}{(r - 1)r(r + 1)}$	[M1]
	Let $r = s + 1$	
	$\sum_{s+1=3}^{\infty} \frac{1}{(s)(s+1)(s+2)} = \sum_{s=2}^{\infty} \frac{1}{(s)(s+1)(s+2)}$	[M1]
	$=\frac{1}{12}$	[A1]

Transformations Assessment Objectives	Solution	Feedback
• To interpret that $y = f(ax + b)$ as a composition of two transformations of graphs.	(a)(i) $y = f\left(\frac{1}{2}x - 1\right)$ (2, 1) (2, 1)	
	$x = 0 \qquad x = 4$ Shape [B1] Asymptotes [B ¹ /2] Turning point [B ¹ /2]	
 To sketch y = f '(x) given the graph y = f(x) 	(ii) $y = f'(x)$	
	Shape[B1]Asymptotes[B1 /2]Intercept[B1 /2]	

• To obtain the graph of $y = g(x)$ given $y = g(x) $ and $y^2 = f(x)$. [HOT]	(b) $y = g(x)$ y = 1
	$\begin{array}{c c} & & & & \\ \hline & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

Maclaurin series				
Assessment Objectives	Solu			Feedback
• To find the Maclaurin series	(i)	$y = \sin^{-1} x$		
		$\sin(y) = x$		
		Differentiate with respect to x :		
		$\left[\cos\left(y\right)\right]\frac{\mathrm{d}y}{\mathrm{d}x} = 1$	[M1]	
		Differentiate with respect to x :		
		$\left[\cos\left(y\right)\right]\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx}\left[-\sin\left(y\right)\frac{dy}{dx}\right] = 0$	[M1]	
		$\left[\cos\left(y\right)\right]\frac{d^{2}y}{dx^{2}} - \left[\sin\left(y\right)\right]\left(\frac{dy}{dx}\right)^{2} = 0$		
		Differentiate with respect to x :		
		$\left[\cos\left(y\right)\right]\frac{d^{3}y}{dx^{3}} + \frac{d^{2}y}{dx^{2}}\left[-\sin\left(y\right)\frac{dy}{dx}\right] +$		
		$\left[-\sin\left(y\right)\right]\left[2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}\right] + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}\left(-\cos\left(y\right)\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0$	[M1]	
		$\left[\cos\left(y\right)\right]\frac{d^{3}y}{dx^{3}} - 3\left[\sin\left(y\right)\right]\frac{dy}{dx}\frac{d^{2}y}{dx^{2}} - \left[\cos\left(y\right)\right]\left(\frac{dy}{dx}\right)^{3} = 0$		
		When $x = 0$		
		$y = \sin^{-1} 0 = 0$		
		$(\cos 0)\frac{dy}{dx} = 1 \Longrightarrow \frac{dy}{dx} = 1$		
		$(\cos 0)\frac{d^2 y}{dx^2} - (\sin 0)(1)^2 = 0 \Longrightarrow \frac{d^2 y}{dx^2} = 0$		
		$(\cos 0)\frac{d^3y}{dx^3} - 3(\sin 0)(1)(0) - (\cos 0)(1)^3 = 0 \Rightarrow \frac{d^3y}{dx^3} = 1$	[A1]	

	Hence $y = 0 + 1(x) + 0\left(\frac{x^2}{2!}\right) + 1\left(\frac{x^3}{3!}\right) + \cdots$		
	$y = x + \frac{x^3}{6} + \cdots$	[A1]	
• To find the binomial expansion of a series	(ii) $\frac{x}{\left(a+bx^{2}\right)} = x\left(a+bx^{2}\right)^{-1}$		•
	$=\frac{1}{a}x\left(1+\frac{b}{a}x^2\right)^{-1}$	[M1]	
	$=\frac{1}{a}x\left(1-\frac{b}{a}x^2+\cdots\right)$		
	$=\frac{1}{a}x-\frac{b}{a^2}x^3+\cdots$	[M1]	
	Comparing $a=1, b=-\frac{1}{6}$	[M1] [A1]	

9 Vectors			
Assessment Objectives	Solution		Feedback
 Assessment Objectives To perform addition and subtraction of vectors, multiplication of a vector by a scalar and understand their geometrical interpretations. To understand concepts of scalar product of vectors. To interpret the scalar product and understand its relationship with the angle between the two direction vectors. [HOT] 	(a) $\frac{\mathbf{r} \cdot \mathbf{a}}{\mathbf{r} \cdot \mathbf{b}} = \frac{\mu \mathbf{a} ^2 + \lambda \mathbf{a} \cdot \mathbf{b}}{\lambda \mathbf{b} ^2 + \mu \mathbf{a} \cdot \mathbf{b}}$ Given $\lambda : \mu = \mathbf{a} : \mathbf{b} \Rightarrow \frac{\lambda}{\mu} = \frac{ \mathbf{a} }{ \mathbf{b} }$ $\frac{\mathbf{r} \cdot \mathbf{a}}{\mathbf{r} \cdot \mathbf{b}} = \frac{\mu \left(\mathbf{a} ^2 + \frac{\lambda}{\mu} \mathbf{a} \cdot \mathbf{b} \right)}{\mu \left(\frac{\lambda}{\mu} \mathbf{b} ^2 + \mathbf{a} \cdot \mathbf{b} \right)}$ $= \frac{ \mathbf{a} ^2 + \frac{ \mathbf{a} }{ \mathbf{b} } \mathbf{a} \cdot \mathbf{b}}{\frac{ \mathbf{a} }{ \mathbf{b} } \mathbf{b} ^2 + \mathbf{a} \cdot \mathbf{b}}$ $= \frac{\frac{ \mathbf{a} }{ \mathbf{b} } \mathbf{b} ^2 + \mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} + \mathbf{a} \cdot \mathbf{b}}$ $= \frac{\frac{ \mathbf{a} }{ \mathbf{b} } (\mathbf{a} \mathbf{b} + \mathbf{a} \cdot \mathbf{b})}{ \mathbf{a} \mathbf{b} + \mathbf{a} \cdot \mathbf{b}}$ From the above result,	[M1]	Feedback
	$ \mathbf{b} (\mathbf{r}\cdot\mathbf{a}) = \mathbf{a} (\mathbf{r}\cdot\mathbf{b})$		
	Let θ_1 and θ_2 be the angle between a and r , b		
	and r respectively. Then	[M1]	
	$ \mathbf{b} (\mathbf{r} \mathbf{a} \cos\theta_1) = \mathbf{a} (\mathbf{r} \mathbf{b} \cos\theta_2)$		
	$\cos \theta_1 = \cos \theta_2$		
	$\theta_1 = \theta_2$	[A1]	

	Since $\cos \theta$ is a 1-1 function from $0 \le \theta \le \pi$. \therefore the line <i>OR</i> bisects angle <i>AOB</i> (shown).	
To determine the algebraic relationship of the 3 planes. [HOT]	(b)(i) $x + 2y + 3z = 1$ — (1) 2x + y - 3z = 5 — (2) 2x - y - 9z = 7 — (3) Using G.C.:	[M1]
	Line of intersection : $\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}, \ \lambda \in \Re$	[A1]
	(ii) If the three planes don't intersect, then the plane π_3 does not intersect the line of intersection. Thus the plane is parallel to the line and thus the normal is perpendicular to the direction vector of the line. $\begin{pmatrix} 2 \\ a \\ b \end{pmatrix} \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = 0 \Rightarrow 6 - 3a + b = 0$	[M1]
	$\Rightarrow 3a - b = 6$ Since (3,-1, 0) cannot lie on π_3 .	[A1]
	$\begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ a \\ b \end{pmatrix} \neq 5 \implies 6 - a \neq 5 \implies a \neq 1$	[M ¹ /2]
	Thus $b = 3a - 6$, $a \in \mathbb{R} \setminus \{1\}$.	[A ¹ / ₂]

Integration/ Definite Integrals			
Assessment Objectives	Solution		Feedback
• To use a given substitution to simplify an integral before integration.	(a) $x = 2 \sec \theta$ $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 \sec \theta \tan \theta$	[M1]	
	$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x$		
	$= \int \frac{1}{4\sec^2\theta\sqrt{4(\sec^2\theta - 1)}} 2\sec\theta\tan\theta d\theta$	[M1]	
	$=\int \frac{1}{2\sec\theta\sqrt{4\tan^2\theta}}\tan\theta\mathrm{d}\theta$		
	$= \int \frac{1}{2\sec\theta(2\tan\theta)} \tan\theta d\theta$		
	$= \int \frac{1}{4 \sec \theta} \mathrm{d}\theta$ $= \frac{1}{4} \int \cos \theta \mathrm{d}\theta$	[M1]	
	$= \frac{1}{4}\sin\theta + C$	[M1]	
	$=\frac{\sqrt{x^2-4}}{4x}+C$	[A1]	
	Note: $x = 2 \sec \theta \Longrightarrow \cos \theta = \frac{2}{x}$		
	$\frac{x}{\sqrt{x^2-4}}$		

 To find the volume of revolution about the <i>x</i>-axis. To use the integrals of 1/(a² + x²) 	(b) $V = \pi \int_{-\sqrt{2}}^{-\frac{1}{\sqrt{2}}} \left(\frac{1}{\sqrt{1+2x^2}}\right)^2 dx$ $= \pi \int_{-\sqrt{2}}^{-\frac{1}{\sqrt{2}}} \frac{1}{1+2x^2} dx$	[M1] •	
	$= \frac{\pi}{2} \int_{-\sqrt{\frac{3}{2}}}^{-\frac{1}{\sqrt{2}}} \frac{1}{\frac{1}{2} + x^2} dx$		
	$= \frac{\pi}{2} \left[\frac{1}{\frac{1}{\sqrt{2}}} \tan^{-1} \left(\frac{x}{\frac{1}{\sqrt{2}}} \right) \right]_{-\sqrt{\frac{3}{2}}}^{-\sqrt{2}}$	[M1]	
	$= \frac{\pi}{2} \left[\sqrt{2} \tan^{-1} \left(\sqrt{2} x \right) \right]_{-\sqrt{2}}^{\frac{1}{\sqrt{2}}}$ $= \frac{\pi}{2} \left[\sqrt{2} \tan^{-1} \left(-1 \right) - \sqrt{2} \tan^{-1} \left(-\sqrt{3} \right) \right]$		
	$=\frac{\pi}{2}\left[\sqrt{2}\left(-\frac{\pi}{4}\right)-\sqrt{2}\left(-\frac{\pi}{3}\right)\right]$ $=\frac{\sqrt{2}}{2}\pi^{2}\left[-\frac{1}{4}+\frac{1}{3}\right]$	[M1]	
	$=\frac{\sqrt{2}}{24}\pi^2$	[A1]	

Applications of Differentiation		
Assessment Objectives	Solution	Feedback
• Sketch the graph of parametric equations.		B ¹ /2] B ¹ /2]
• Find the equation of tangent	(ii) $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 3t^2 \times \frac{1}{2t} = \frac{3}{2}t$ When $t = 2$, $x = 6$ y = 8 $\frac{dy}{dx} = 3$ Equation of tangent: $y - 8 = 3(x - 6)$ y = 3x - 10	[M1] [A1] [A1]
• Find intersection between a line and parametric equation	Comparing the coefficient of q^2 , $-2q^2 + aq^2 = -3q^2$	[M1]

	$q^{3}-3q^{2}+4=0$ $(q-2)(q^{2}-q-2)=0$ $(q-2)(q-2)(q+1)=0$ $q=2$ (rejected since that is point P) or $q=-1$	[M1]
	$\therefore Q(3,-1)$	[A1]
• Find area of parametric curve. [HOT]	(iv) (6,8) (3,-1)	
	Area = Area of trapezium $-\int_{-1}^{8} x dy$	[M1]
	$=\frac{1}{2}(3+6)(8-(-1))-\int_{-1}^{8}x\mathrm{d}y$	[M1]
	Consider $\int_{-1}^{8} x dy = \int_{-1}^{2} (t^2 + 2) (3t^2) dt$	
	$= \int_{-1}^{2} 3t^4 + 6t^2 \mathrm{d}t$	[M1]
	$= \left[\frac{3}{5}t^5 + 2t^3\right]_{-1}^2$	
	$= \left[\frac{3}{5}(32) + 2(2^{3})\right] - \left[\frac{3}{5}(-1) + 2(-1)\right]$	
	$= 37\frac{4}{5} \text{ units}^{2}$ Area = $40\frac{1}{2} - 37\frac{4}{5} = 2\frac{7}{10} \text{ units}^{2}$	[A1]

Complex Numbers			
Assessment Objectives	Solution		Feedback
• To find the modulus and argument of Quotient for a complex number.	(a) $ z = \left \frac{(1+i)^3}{\sqrt{3}-i} \right = \frac{\sqrt{2}^3}{2}$	[M1]	
• Able to express complex number in $x+i$ y and	$=\sqrt{2}$	[A1]	
trigonometric form, hence find $\tan(\arg z)$.	$\arg \frac{(1+i)^3}{\sqrt{3}-i} = 3\arg(1+i) - \arg(\sqrt{3}-i)$	[M1]	
	$= 3\left(\frac{\pi}{4}\right) - \left(-\frac{\pi}{6}\right) = \frac{11\pi}{12}$	[A1]	
	$\therefore z = \frac{(1+i)^3}{\sqrt{3}-i} = \sqrt{2} e^{i\left(\frac{11\pi}{12}\right)} = \sqrt{2} \left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)$		
	$\frac{(1+i)^3}{\sqrt{3}-i} = \frac{2(-1+i)}{\sqrt{3}-i} = \frac{2(-1+i)}{\sqrt{3}-i} \times \frac{\sqrt{3}+i}{\sqrt{3}+i}$	[M1]	
	$=\frac{-(1+\sqrt{3})}{2}+\frac{(\sqrt{3}-1)i}{2}$	[A1]	
	$\therefore \frac{-(1+\sqrt{3})}{2} + \frac{(\sqrt{3}-1)i}{2} = \sqrt{2} \left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)$		
	$\Rightarrow \sqrt{2}\cos\frac{11\pi}{12} = -\frac{-(1+\sqrt{3})}{2}$	[M ¹ /2]	
	$\sqrt{2}\sin\frac{11\pi}{12} = \frac{(\sqrt{3}-1)}{2}$	[M ¹ ⁄2]	
	$\therefore \tan \frac{11\pi}{12} = -\frac{\sqrt{3}-1}{\sqrt{3}+1} = \sqrt{3}-2$	[A1]	

