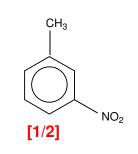
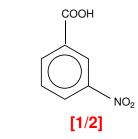
Name/CG:

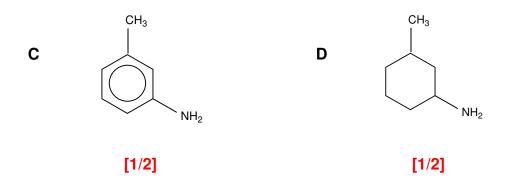
2012 Term 2 Organic Chemistry Revision (Session II)

Deductive Question

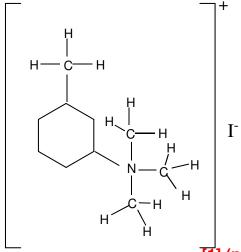
1(a) A yellow liquid **A**, $C_7H_7NO_2$, reacts with alkaline potassium manganate (VII) and on acidification gives a yellow solid **B**, $C_7H_5NO_4$.


After treating **A** with tin and concentrated hydrochloric acid, the addition of sodium hydroxide releases liquid **C**.


Under suitable conditions for reduction (with hydrogen under pressure at 160 $^{\circ}$ C in the presence of nickel) **A** is slowly converted into **D**, C₇H₁₅N. **D** reacts with excess of iodomethane to give a quaternary salt, **E**, of formula C₇H₁₃(CH₃)_xNI.


- (i) Deduce the possible structures of **A** to **E** giving your reasoning.
- Number of C and H atoms are comparable and no. of C atoms > 6, hence A contains a benzene. [1/2]
- A undergoes (side-chain) <u>oxidation</u> [1/2] with alkaline KMnO₄ which on acidification gives B.
 ⇒ A contains a <u>methyl side chain/methylbenzene</u> [1/2]
 ⇒ B is a <u>carboxylic acid</u> [1/2]
- A undergoes <u>reduction</u> [1/2] with tin and concentrated HCI & NaOH to form liquid C
 ⇒ A is an <u>nitrobenzene</u> [1/2]
 ⇒ C is a <u>phenylamine</u> [1/2]
- A undergoes <u>reduction</u> with H₂ at high temperature and pressure to form **D**, $C_7H_{15}N$ \Rightarrow **D** is a **amine [1/2]**
- D undergoes <u>nucleophilic substitution</u> with excess CH₃I to form quaternary salt, E. [1/2]

В


(Total : 5.5 marks)

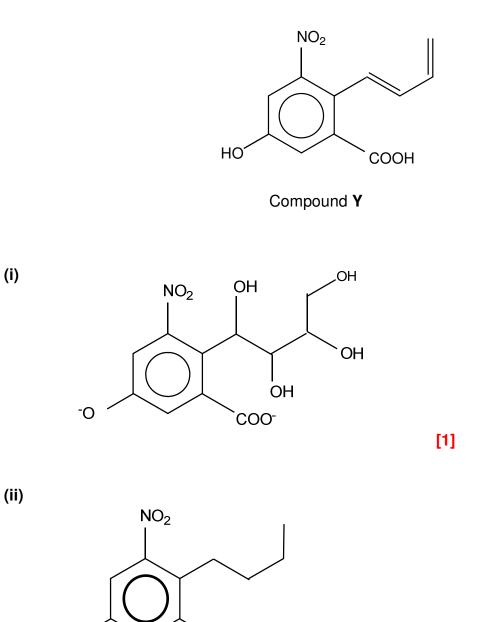
(i) State the value of **x** in compound **E** and give its displayed structure. Give a reason to explain why **E** dissolves in water while the rest of the compounds do not.

[8]

Since **E** is a quaternary salt, x = 3. [1/2]

Displayed formula of **E** :

[1] (no displayed formula –no mark)


E is soluble in water as it is an <u>ionic compound</u> which can form <u>ion-dipole attraction</u> with water. [1/2] However, the other compounds contain <u>large hydrophobic benzene and</u>

cyclohexane ring which are insoluble in water. [1/2]

(Total : 2.5 marks)

- (b) Draw the structural formula of the products formed when compound Y is reacted with
 - (i) cold, alkaline potassium manganate (VII)
 - (ii) excess of hydrogen gas in the presence of platinum catalyst.

Name the functional groups present in compound Y.

СООН

HO

[2]

2 Two isomeric organic liquids **A** and **B** contain 80.6% carbon, 7.5% hydrogen and 11.9% oxygen by mass.

When 0.358 g of **A** or **B** was evaporated in a syringe, the volume of the vapour produced, after correction to s.t.p. was 60.0 cm^3 .

Both **A** and **B** gave an orange precipitate with 2,4-dinitrophenylhydrazine and silver mirror with Tollens' reagent. However, both **A** and **B** do not give a yellow precipitate on warming with aqueous alkaline iodine.

With lithium aluminium hydride in dry ether, **A** was converted to a compound **C** which exists in optically active forms. **B** under the same conditions produced a compound **D** which is isomeric with **C** but cannot exist in optically active forms.

Both **A** and **B** on vigorous oxidation gave compound **E** as an end product, having molecular formula $C_7H_6O_2$.

Deduce the structural formulae of compounds **A** to **E**, giving your reasoning.

[10]

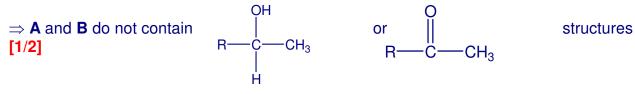
[1/2]

Empirical formula of **A** and **B**:

	<u>C</u>	<u>H</u>	<u>O</u>
Mass / 100g (g)	80.6	7.5	11.9
No. of mol	6.72	7.5	0.744
Ratio	9	10	1

Empirical formula of **A** and **B**: C₉H₁₀O [1/2]

No. of mol of vapour	_ 60.0×10 ⁻³		
	=		
	$= 2.68 \times 10^{-3} \text{ mol } [1/2]$		

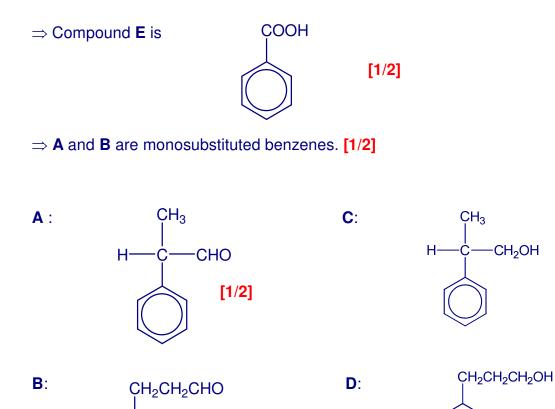

M_r of **A** and **B** = $\frac{0.358}{2.68 \times 10^{-3}}$ = 134 [1/2]

Molecular formula of **A** and **B**: C₉H₁₀O [1/2]

Number of C and H atoms are comparable and <u>no. of C is greater than 6</u> \Rightarrow A and B, <u>both contain a benzene ring</u> [1/2] A and B undergo condensation with 2,4-DNPH [1/2] \Rightarrow A and B are carbonyl compounds [1/2]

A and B undergo oxidation with Tollens' reagent [1/2] \Rightarrow A and B are aldehydes [1/2]

A and B do not undergo oxidation with aqueous alkaline iodine [1/2]



A and B undergo reduction with $LiAlH_4$ to optically active C and optically inactive D respectively [1/2]

 \Rightarrow C and D are primary alcohols [1/2]

 \Rightarrow C has a chiral carbon and D has no chiral carbon [1/2]

A and B undergo vigorous oxidation to form E

[1/2]

[1/2]

[1/2]

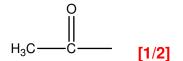
3 The isomers **A**, **B**, **C** and **D** of the formula $C_5H_{12}O$ can react with hot acidified $K_2Cr_2O_7$ to give products **E**, **F**, **G** and **H** respectively.

Out of E, F, G and H, only E gives a yellow precipitate upon reaction with alkaline aqueous iodine, whilst F and H does not give an orange precipitate with 2,4-dinitrophenylhydrazine.

H can react with **D** under certain conditions to give a compound that has a formula $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$.

On reacting \mathbf{D} with hot concentrated sulfuric acid, the resulting product can react with steam under certain conditions to form \mathbf{A} .

When treated with limited chlorine in the presence of uv light **B** forms three two monochloro-substituted products (structural isomers) with one chlorine atom while **C** forms two three monochloro-substituted products (structural isomers).


Suggest possible structures for the compounds **A** to **H**, explaining your reasons.

[10]

A, B, C and D undergo <u>oxidation</u> [1/2] with acidified $K_2Cr_2O_7$ to form E, F, G and H respectively \Rightarrow A, B, C and D are 1° or 2° <u>alcohols</u> [1/2]

 \Rightarrow E, F, G and H are <u>ketone or carboxylic acid</u> [1/2]

E undergoes <u>oxidation</u> with alkaline aq I_2 [1/2] \Rightarrow **E** has the structure:

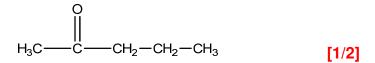
 \Rightarrow A has CH₃CH(OH) structure [1/2]

F and H do <u>not undergo condensation</u> with 2,4-DNPH [1/2]

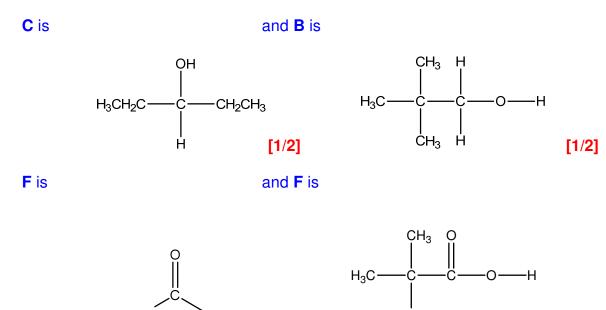
- \Rightarrow F and H are <u>not carbonyl compounds</u> [1/2]
- \Rightarrow F and H are <u>carboxylic acids</u> [1/2]
- \Rightarrow **B** and **D** are <u>1° alcohols</u>. [1/2]

H, a carboxylic acid reacts with **D**, an alcohol to give ester that has a formula $CH_3CH_2CH_2CH_2CO_2CH_2CH_2CH_2CH_2CH_3$ [1/2] From the structure of ester, **H** is likely to be $CH_3CH_2CH_2CH_2CO_2H$. [1/2]

	[1/2]
and D is likely to be CH₃CH₂CH₂CH₂CH₂CH₂OH .	[1/2]


D undergoes <u>elimination</u> with hot conc. sulfuric acid to form alkene which undergoes <u>electrophilic addition</u> with steam to form A, [1/2]

A is $CH_3CH_2CH_2CH(OH)CH_3$ [1/2]


 CH_2CH_3

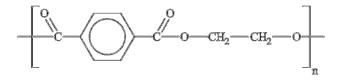
CH₂CH₃

Thus E is

B and **C** undergo <u>free radical substitution</u> with chlorine and uv light **[1/2]** and **B** forms two monochloro-substituted products while **C** forms three monochloro-substituted products.

[1/2]

ĊH₃


[1/2]

4 A solid compound **J** (C₁₅H₁₅NO) is insoluble in both hydrochloric acid and dilute sodium hydroxide.

On warming with aqueous sodium hydroxide, **J** forms a liquid **K** (C_7H_9N) on the surface of an alkaline mixture, **X**. Liquid **K** can be separated from the alkaline mixture **X** by steam distillation, and dissolves in dilute hydrochloric acid.

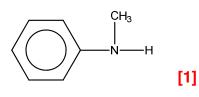
K can also react with excess bromomethane to give a compound **L** which has the formula $C_9H_{14}NBr$.

On the other hand, upon acidification, the alkaline mixture **X** yields a solid **M** $(C_8H_8O_2)$ which gives rapid effervescence with aqueous sodium carbonate. Oxidation of **M** yields one of the monomers that is used to make *Terylene*.

Terylene

Deduce the structures of **J**, **K**, **L** and **M**, explaining your reasoning. Give balanced equations where appropriate.

[10]

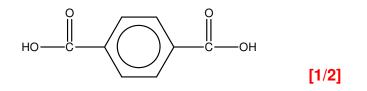

Number of C and H are comparable and no. of C is greater than 6, \Rightarrow J contains a **benzene ring.** [1/2]

J is insoluble in both acid and base \Rightarrow J is neutral [1/2] \Rightarrow J is an amide [1/2]

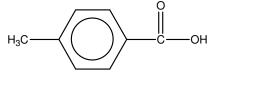
J thus undergoes **basic hydrolysis** with warm NaOH to give K and M. [1/2]

K undergoes neutralization with dilute HCl [1/2] \Rightarrow K is <u>basic</u> [1/2] \Rightarrow K is <u>an amine</u> [1/2] Bromoethane undergoes <u>nucleophilic substitution</u> with K to form L. [1/2] Since K <u>gains 2 – CH₃ groups</u> upon reaction with excess bromoethane to form L, K is a <u>secondary amine</u>. [1/2]

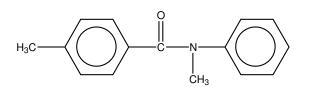
K is



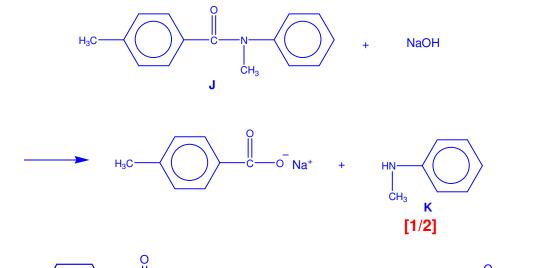
L is

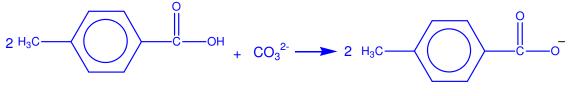

 $\begin{array}{c} & & \overset{CH_3}{|_+} \\ & & & \overset{R}{|_+} \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & &$

M undergoes neutralisation with sodium carbonate to give CO_2 gas \Rightarrow **M** is a <u>carboxylic acid</u> [1/2]


Since oxidation of \mathbf{M} gives one of the monomers that is used to make Terylene, the monomer involved is diacid monomer, i.e.

M is

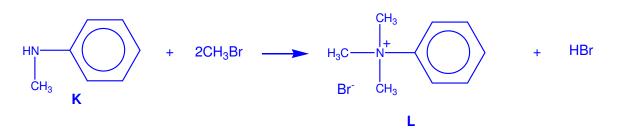

J is

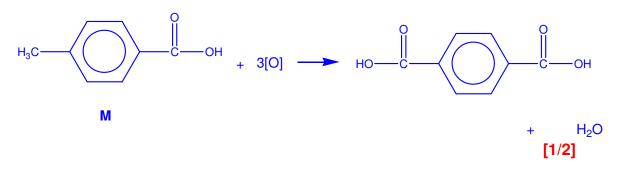


[1]

[1]

The relevant equations are :




Μ

[1/2]

[1/2]

Max 10m

5 A neutral compound **T** contains 46.2% carbon, 7.7% hydrogen and 46.1% oxygen by mass. When heated with aqueous sodium hydroxide, **T** gives compound **U**, $C_2H_6O_2$, and sodium ethanoate.

When one mole of **U** reacts with only one mole of hydrogen chloride, compound **V**, C_2H_5OCl , is formed. Compound **V** gives compound **W**, C_3H_5ON , on heating with ethanolic potassium cyanide.

When **W** is heated with dilute sulfuric acid, an optically inactive liquid **X**, $C_3H_6O_3$, is obtained. On heating **X** alone, a sweet smelling liquid **Y**, $C_3H_4O_2$, is formed. Oxidation of **X** gives a solid **Z**, $C_3H_4O_4$, which is soluble in water.

Deduce the structural formula of compound **T** to **Z** giving your reasoning.

[10]

[1/2]

Element	С	Н	0
% Mass	46.2	7.7	46.1
mole	46.2	7.7	46.2
	12	1	16
	= 3.85	= 7.7	=2.89
Divide by	$\frac{3.85}{$	$\frac{7.7}{2.22} = 2.66$	2.89 _ 1
smallest mole	$\frac{1}{2.89} = 1.33$	$\frac{1}{2.89} = 2.00$	$\frac{2.89}{2.89} = 1$
Ratio	4	8	3

Empirical formula of T is $C_4H_8O_3$ [1/2]

T undergoes <u>basic hydrolysis</u> with hot NaOH(aq) to form U and CH₃COONa [1/2]

 \Rightarrow **T** is an ester [1/2]

 \Rightarrow U is an alcohol [1/2] with two carbons

One mole of U undergoes <u>nucleophilic substitution with one mole of HCI</u> to form V [1/2]

 \Rightarrow V is a halogenoalkane [1/2]

V undergoes <u>nucleophilic substitution with ethanolic KCN</u> to form W [1/2] \Rightarrow W is a nitrile compound (contains a CN group) [1/2]

W undergoes <u>acidic hydrolysis with hot dilute H₂SO₄</u> to form *optically inactive* X [1/2]

- \Rightarrow X is a carboxylic acid [1/2]
- \Rightarrow X does not have a chiral carbon [1/2]

On heating X, a sweet smelling Y is formed. \Rightarrow Y is cyclic ester [1/2]

X is CH₂(OH)CH₂COOH [1/2]

Y is

 $H_2C - O$ | | $H_2C - C=O$ [1/2]

 \boldsymbol{X} undergoes oxidation to form \boldsymbol{Z} \Rightarrow \boldsymbol{Z} is HOOCCH_2COOH [1/2]

Hence, W is <u>CH₂(OH)CH₂CN</u> [1/2]

 $\boldsymbol{U} \text{ is } CH_2(OH)CH_2(OH) ~ \textbf{[1/2]}$

V is $CH_2(OH)CH_2Cl$ [1/2]

T is CH₂(OH)CH₂OOCCH₃ [1/2]

6 An organic compound A, C₉H₁₁Br, on treatment with hot aqueous potassium hydroxide gave a compound B, C₉H₁₂O. B responded to oxidation in three different ways. With acidified potassium dichromate it yielded C, C₉H₁₀O. With sodium hydroxide and iodine it yielded D, C₈H₇O₂Na and a yellow precipitate. With hot, acidic potassium manganate (VII) it yielded E, C₇H₆O₂.

Identify compound **A** to **E** and explain the above reactions.

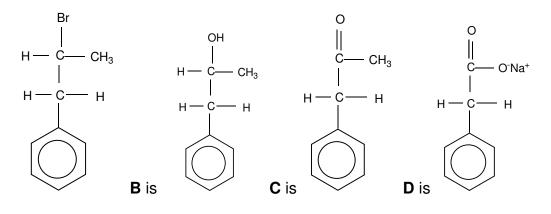
[7]

Number of C and H is comparable in A and number of C atoms is greater than 6, \Rightarrow A contains **benzene** [1/2]

A undergoes <u>nucleophilic substitution with hot KOH</u> to form B [1/2] \Rightarrow A is a halogenoalkane [1/2] \Rightarrow D is an alashal [1/2]

 \Rightarrow **B** is an alcohol [1/2]

B undergoes oxidation with acidified $K_2Cr_2O_7$ to form **C**, $C_9H_{10}O$


- \Rightarrow C is a <u>ketone</u> [1/2]
- \Rightarrow **B** is a <u>secondary alcohol</u> [1/2]

 ${\bm B}$ undergoes ${\bm oxidation}$ with sodium hydroxide and iodine to form ${\bm D},\, C_8 H_7 O_2 Na$ and a yellow ppt

- \Rightarrow yellow ppt is CHI₃ [1/2]
- \Rightarrow **B** contains **<u>CH₃CH(OH) structure</u>[1/2]**

B undergoes (side-chain) oxidation with acidified KMnO₄ to form **E**, $C_7H_6O_2$.

- \Rightarrow E, <u>benzoic acid</u>, C₆H₅COOH [1/2]
- \Rightarrow <u>B is monosubstituted benzene.</u> [1/2]

A is

[1/2]

[1/2]

7 A substance **A**, $C_4H_9NO_2$ is a optically active solid with a high melting point. It dissolves in water to give a nearly neutral solution.

B which is formed from **A** has the formula, $C_4H_8O_3$. On warming **B** with ethanol and excess concentrated sulfuric acid, a liquid ester **C**, $C_6H_{10}O_2$, is formed. On exposure to light, **C** forms slowly forms a glassy solid which is an addition polymer.

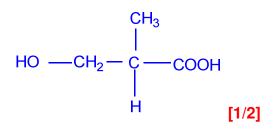
B reacts with PC I_5 to give **D**, which rapidly reacts with water to give **E**, C₄H₇C IO_2 .

Treatment of **E** with hot aqueous sodium hydroxide followed by acidification will reform **B**. Compound **B** undergoes dehydration in the presence of concentrated sulfuric acid to form compound **F**, $C_4H_6O_2$.

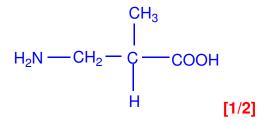
Deduce the structures of the compounds of **A**, **B**, **C**, **D**, **E** and **F**. Explain the chemistry of the reactions involved.

[10]

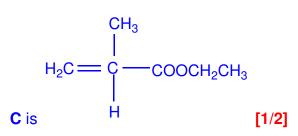
A, $C_4H_9NO_2$ is a optically active solid with a high melting point \Rightarrow A could be an <u>amino acids</u> [1/2]

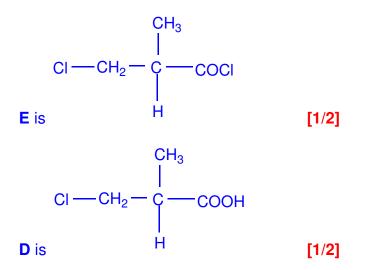

 \Rightarrow A contains a <u>chiral C [1/2]</u>

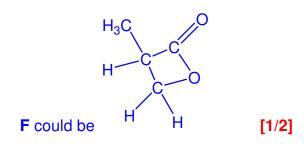
B which is formed from **A** has the formula, $C_4H_8O_3$. \Rightarrow **B** contains **a** <u>chiral C</u>


B undergoes <u>esterification</u> with ethanol to form liquid ester **C** [1/2] \Rightarrow **B** is <u>carboxylic acid</u>. [1/2]

B also undergoes <u>elimination</u> with excess conc. H_2SO_4 , [1/2] \Rightarrow **B** is <u>alcohol</u> [1/2]


B is


Hence **A** is


C undergoes addition polymerisation to form D, \Rightarrow C contains <u>C=C bonds</u>. [1/2]

B undergoes <u>nucleophilic substitution</u> with PCl₅ to give **D** [1/2] and **D** undergoes <u>nucleophilic substitution</u> with water to form **E** [1/2] **E** undergoes <u>nucleophilic substitution</u> with hot NaOH(aq) to reform **B** [1/2] \Rightarrow **E** contains <u>-Cl (halogenoalkane)</u> [1/2] and <u>-COCl (acyl chloride)</u> groups. [1/2]

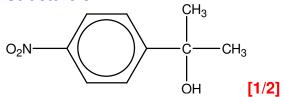
B undergoes **self-esterification** with conc. sulphuric acid to form an F [1/2] F is a cyclic <u>ester.</u> [1/2]

[Total = 10]

8 This question is about compound \mathbf{F} , $C_9H_{13}NO$.

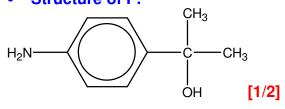
The following information is given about **F**:

- Compound **F** is insoluble in water but it dissolves readily in aqueous HC*I*.
- When **F** is treated with PBr_3 , **F** forms compound **G**, $C_9H_{12}NBr$.
- When **F** is treated with acidified KMnO₄, no decolourisation of purple KMnO₄ is observed.
- **F** can be formed when compound **E** reacts with tin metal and concentrated hydrochloric acid.

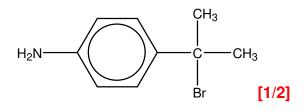

G forms **H**, $C_9H_{11}N$, when heated with alcoholic KOH and **H** in turn gives compound **I**, $C_9H_{10}NOBr_3$, when reacted with aqueous Br_2 in the dark.

Deduce the structures of the compounds **E**, **F**, **G**, **H** and **I**. Explain the chemistry of the reactions described.

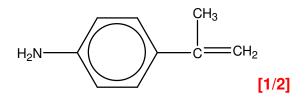
[10]

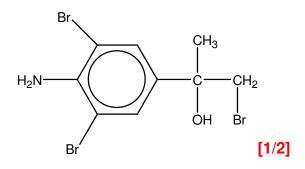

- <u>Number of C atoms and H atoms are comparable</u> and <u>no. of C is more than</u> <u>6</u>, F contains a <u>benzene ring</u>. [1/2]
- F undergoes <u>neutralisation</u> with aqueous HCI [1/2]
 - \Rightarrow F is <u>basic [1/2]</u>
 - \Rightarrow F is an <u>amine</u> [1/2]
- F undergoes <u>nucleophilic substitution</u> with PBr₃ to form G [1/2]
 ⇒ F is <u>alcohol</u> [1/2]
 ⇒ G is <u>halogenoalkane</u> [1/2]
- F does not undergo oxidation with acidified KMnO₄ [1/2]
 ⇒ F is <u>3° alcohol</u> [1/2]
- E undergoes <u>reduction</u> with Sn and conc. HCl fo form F [1/2]
 ⇒ E is <u>nitrobenzene</u> [1/2]
 ⇒ F is <u>phenylamine</u> [1/2]
- G undergoes <u>elimination</u> with alcoholic KOH to form H. [1/2]
 ⇒ H contains an <u>alkene</u> group. [1/2]
- H undergoes <u>electrophilic substitution</u> with a Br₂ [1/2] and <u>electrophilic</u> <u>addition</u> with a Br₂ [1/2] to form I, $C_9H_{10}NOBr_3$
 - \Rightarrow H contains phenylamine and alkene functional groups [1/2]
 - \Rightarrow H is either 2- or 4- substituted phenylamine [1/2]

• Structure of E:



accept 1,2-position


• Structure of F:


• Structure of G:

• Structure of H:

• Structure of I

[max: 10]