| 1 | (a) |       | It is the <u>thermal energy absorbed</u> when a substance changes from <u>liquid to vapour</u> at <u>constant temperature</u> .<br>Equivalently, it is the <u>thermal energy released</u> when a substance changes from <u>vapour</u> to liquid at <u>constant temperature</u> .<br><u>Examiner's report:</u><br>A number of candidates confused latent heat with specific latent heat.<br>The fact that it occurs at constant temperature must not be omitted. |
|---|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (b) | (i)   | So that heat loss to the environment may be accounted for.                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |     |       | <u>Examiner's report:</u><br>A number of candidates thought that heat loss will be eliminated in the experiment,<br>rather than through calculations. These candidates were not awarded marks.                                                                                                                                                                                                                                                                  |
|   |     | (ii)  | Heat supplied by heater = Heat absorbed by water + Heat loss to environment (h)<br>Pt = mL + h<br>Sub in values from table:<br>$140 (5 \times 60) = 0.0141 L + h (1)$<br>$95 (5 \times 60) = 0.0082 L + h (2)$<br>(1) - (2):<br>13500 = 0.0059 L<br>$L = 2.2881 \times 10^6 L kg^{-1} = 2200 L g^{-1}$                                                                                                                                                          |
|   |     |       | $L = 2.2001 \times 10^{-10} \text{ J Kg}^{-1} = 2290 \text{ J g}^{-10}$                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 | (a) | (i)   | The centripetal force on the ball is provided by both its weight (mg) and the tension exerted by the rod on the ball.                                                                                                                                                                                                                                                                                                                                           |
|   |     | (ii)  | 3mg                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |     | (iii) | When the ball is vertically above C,<br>$3mg = mv^2/r$<br>$v^2/r = 3g$ (1)<br>Since ball's speed v is constant,<br>When the ball is vertically below C,<br>$T - mg = mv^2/r$<br>T - mg = 3mg<br>T = 4mg                                                                                                                                                                                                                                                         |
|   | (b) | (i)   | From (a)(ii),<br>Centripetal force = $3mg = mr\omega^2$<br>$3(9.81) = 0.72 \omega^2$<br>$\omega = 6.3934 = 6.39 \text{ rad s}^{-1}$                                                                                                                                                                                                                                                                                                                             |
|   |     | (ii)  | $v = r \omega = 0.72 \times 6.3934 = 4.6032 = 4.60 \text{ m s}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (C) | (i)   | Gravitational potential energy is decreased but kinetic energy is constant. Hence work must be done to maintain constant kinetic energy.                                                                                                                                                                                                                                                                                                                        |

|   |     |               | <u>Examiner's report:</u><br>A common misconception was to state that work has to be done because the<br>centripetal force has changed direction from being vertically upwards to vertically<br>downwards. Note also that work done by centripetal force equals zero.                  |
|---|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     | (ii)          | By conservation of energy,<br>Work done on ball = Loss in GPE<br>= mg $(2r)$<br>= 0.240(9.81)(2x0.72) = 3.39 L                                                                                                                                                                         |
|   |     |               | = 0.240(9.01)(2x0.72) = 0.090                                                                                                                                                                                                                                                          |
| 3 | (a) | (i)           | It is a region in space where a body placed in it experiences a force, even though it may<br>not be in direct contact with another body.                                                                                                                                               |
|   | (1) | (ii)          | Field strength is related to the closeness of the lines of force.                                                                                                                                                                                                                      |
|   | (b) | (I)           | Mass                                                                                                                                                                                                                                                                                   |
|   |     | (II)<br>(iii) | Positive charge                                                                                                                                                                                                                                                                        |
|   |     | (111)         | Force on a north pole                                                                                                                                                                                                                                                                  |
|   |     |               | <u>Not accepted:</u> force on a moving charge. Note that he force on a moving charge is not in the direction of the field.                                                                                                                                                             |
|   | (c) |               |                                                                                                                                                                                                                                                                                        |
|   |     |               | Electric field lines Plate at higher potential                                                                                                                                                                                                                                         |
|   |     |               | Particles travelling                                                                                                                                                                                                                                                                   |
|   |     |               | binding too fast                                                                                                                                                                                                                                                                       |
|   |     |               | Direction of $x + x + x + x + x + x + x + x + x + x $                                                                                                                                                                                                                                  |
|   |     |               | velocity at entry                                                                                                                                                                                                                                                                      |
|   |     |               |                                                                                                                                                                                                                                                                                        |
|   |     |               | X X X X X X A Particles travelling                                                                                                                                                                                                                                                     |
|   |     |               | Magnetic field lines too slow                                                                                                                                                                                                                                                          |
|   |     |               | Plate at lower notential                                                                                                                                                                                                                                                               |
|   |     |               |                                                                                                                                                                                                                                                                                        |
|   |     |               | Velocity selector makes use of a <u>uniform electric field placed perpendicular to a uniform</u> <u>magnetic field</u> . The relative orientation of the 2 fields is such that the charged particles experience a magnetic force and an electric force in <u>opposite directions</u> . |
|   |     |               | For the undeflected particles, the two forces are equal in magnitude:                                                                                                                                                                                                                  |
|   |     |               | Electric force = Magnetic force                                                                                                                                                                                                                                                        |
|   |     |               | qE = Bqv where q is the charge and v is the selected velocity<br>v = E/B                                                                                                                                                                                                               |
|   |     |               | Thus by adjusting the electric field strength (E) and magnetic flux density (B) to obtain                                                                                                                                                                                              |
|   |     |               | the desired ratio E/B, the desired velocity may be selected.                                                                                                                                                                                                                           |
| 4 | (a) | (i)           | When A is closed and B opened, Resistance between X and Y = R1 = $6\Omega$                                                                                                                                                                                                             |
|   |     | (ii)          | When A is opened and B is closed,                                                                                                                                                                                                                                                      |
|   |     |               | Resistance between X and Y = R1 + R2 = $10\Omega$<br>R2 = $10-6 = 4\Omega$                                                                                                                                                                                                             |
|   |     | (iii)         | When both A and B are opened,                                                                                                                                                                                                                                                          |
|   |     |               | Resistance between X and Y = R1 + R2 + R3 = $12\Omega$                                                                                                                                                                                                                                 |
|   |     |               | $R3 = 12-10 = 2 \Omega$                                                                                                                                                                                                                                                                |

|   | (b) | $Z \xrightarrow{R2} R1 \xrightarrow{X}$ Resistance between X and Z $= (1/R2 + 1/R3)^{-1} + R1$ $= 7.33\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) |   |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 5 | (a) | It is the minimum energy required by an electron to escape from the surface of the metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a) | 5 |
|   | (b) | Energy of each photon = $hc/\lambda$<br>= $(6.63x10^{-34})(3x10^8)/(540x10^{-9})$<br>= $3.6833x10^{-19} J$<br>= $2.30 eV$<br>Since each electron can only absorb 1 photon,<br>the energy of the photon is insufficient to overcome the work function of the metal.<br>Hence no electrons are emitted.                                                                                                                                                                                                                                                                                                             | (b) |   |
|   | (c) | Intensity determines the <u>rate of arrival of photons at the surface</u> and <u>not the energy of individual photons</u> . Since each electron can only absorb one photon, the electrons will still have insufficient energy to overcome the work function of the metal. Hence no electrons emitted.<br><u>Examiner's report:</u><br>It is more accurate to say that intensity governs the <b>rate</b> of arrival of photons (or number of photons reaching the surfaced <b>per unit time</b> ), rather than the number of photons.<br>Candidates must also mention that energy of the photons remain unchanged. | (c) |   |
| 6 | (a) | Force is a push or a pull, acting in a specific direction. <u>Examiner's report:</u><br>Candidates should be reminded that force is a vector quantity and that, where a vector<br>quantity is being defined, direction should be taken into consideration.                                                                                                                                                                                                                                                                                                                                                        | (a) | 6 |



|   |       |       | 2. $k = 5/(10 - 6) = 1.25 \text{ N cm}^{-1} = 125 \text{ N m}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |       |       | Magnitude of change in EPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |       |       | $= \frac{1}{2} k(0.10 - 0.06)^2 - \frac{1}{2} k(0.092 - 0.06)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |       |       | = 0.036  J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |       | (:::) | Work dans L degrasses in CDE - Increases in EDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |       | (111) | Work done + decrease in GPE = increase in GPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |       |       | -0.036 = 0.032 = 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |       |       | - 0.000 - 0.002 - 0.004 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | (d)   | (i)   | Total energy = 0.004 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | (-)   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |       |       | Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |       |       | This should correspond to the difference between the energy at the amplitude position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |       |       | and the energy at the equilibrium position. Note that the mass oscillates about the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |       |       | equilibrium position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |       |       | $\frac{1}{2} k (0.010 - 0.06)^{2} - \frac{1}{2} k (0.092 - 0.06)^{2} - mg(0.0080) = 0.004 J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |       | (ii)  | 1 KF $-\frac{1}{2}$ m y $^{2}$ $-\frac{1}{6}$ (4 0/9 81) y $^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |       |       | $KE_{max} = Total energy - FPF at equilibrium point$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |       |       | $\frac{1}{2}(4.0/9.81) v_0^2 = 0.004 - \frac{1}{2} k(0.092 - 0.06)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |       |       | $v_0 = 0.140 \text{ m s}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |       |       | 2. $v_o = \omega x_o = (2\pi f) x_o = 2\pi f (0.0080)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |       |       | $0.140 = 2\pi f(0.0080)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |       |       | f = 2.79 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (0)   |       | A coving with more would increase the offective more of the covillating eveter. This will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | (e)   |       | A spring with mass would increase the effective mass of the oscillating system. This will equal the frequency of excillation to decrease $(\mu) = \frac{1}{2} \left( \frac{1}{2} $ |
|   |       |       | cause the nequency of oscillation to decrease. ( $\omega = v(w(n))$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7 | (a)   |       | Progressive: energy is transferred from the source outwards, in the direction of wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | ()    |       | travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |       |       | Transverse: particles in the medium oscillate in a direction perpendicular to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |       |       | direction of energy transfer, but is not displaced in the direction of wave travel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | (6)   |       | In an unnelesided transverse wave, the particles is the readium excillate is reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | (a)   |       | In an unpolarised transverse wave, the particles in the medium oscillate in multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |       |       | planes which are perpendicular to the direction of energy transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |       |       | out of all possible planes that are perpendicular to the direction of energy transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | (c)   | (i)   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |       | (ii)  | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |       | (iii) | Ι α A <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | (d)   |       | A, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | ( - ) | (1)   | $ACOSOU^{\circ} = \frac{1}{2} A, \frac{1}{4} I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | (e)   | (1)   | ine principle of superposition states that if two or more waves of the same kind exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |       |       | simultaneously at a point, the resultant displacement is the vector sum of the individual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |       |       | displacements due to the waves at this point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |       | (::)  | The incident equal wave is reflected at the encoder and of the size. The incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |       | (11)  | The incident sound wave is reflected at the opposite open end of the pipe. The incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |       | wave and reflected wave superpose. Since the two waves are of the same nature,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |       |       | same trequency, same speed and have similar amplitude and are travelling in opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|   |     |      | directions, the resultant wave formed is a stationary wave.                                                                                                                                                                                                                                           |
|---|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (f) | (i)  | incident A N A                                                                                                                                                                                                                                                                                        |
|   |     |      | 67cm                                                                                                                                                                                                                                                                                                  |
|   |     |      | <u>Examiner's report:</u><br>Candidates needed to be more precise in their answers. The antinodes should have<br>been shown at the ends of the pipe (or just outside) and the node at the centre.                                                                                                     |
|   |     | (ii) | $\lambda/2 = 0.67$                                                                                                                                                                                                                                                                                    |
|   |     |      | λ = 1.34 m                                                                                                                                                                                                                                                                                            |
|   |     |      | $v = f\lambda = 250 (1.34) = 335 \text{ m s}^{-1}$                                                                                                                                                                                                                                                    |
|   | (g) |      | Antinodes are actually outside the pipe rather than right at the ends of the pipe as the vibrations of the air molecules extend slightly beyond the end of the pipes. As such, the value 1.34 m is an underestimate of the actual wavelength of the sound wave. Hence speed v is also underestimated. |
| 8 | (a) | (i)  | For an isolated system, total momentum is conserved.                                                                                                                                                                                                                                                  |
|   |     |      | Take vectors to the right as positive.                                                                                                                                                                                                                                                                |
|   |     |      | Total momentum before decay = Total momentum after decay                                                                                                                                                                                                                                              |
|   |     |      | 0 = (4u)(V) + (A - 4)u(-v)                                                                                                                                                                                                                                                                            |
|   |     |      | (A - 4)v = 4V                                                                                                                                                                                                                                                                                         |
|   |     | (ii) | $\frac{\frac{1}{2}(4u)V^2}{\frac{1}{2}(A-4)uv^2} = \frac{4V^2}{(A-4)v^2}$                                                                                                                                                                                                                             |
|   |     |      | From (a)(i), $V/v = (A - 4) / 4$                                                                                                                                                                                                                                                                      |
|   |     |      | Hence,                                                                                                                                                                                                                                                                                                |
|   |     |      | $\frac{\frac{1}{2}(4u)V^2}{\frac{1}{2}(A-4)uv^2} = \frac{4V^2}{(A-4)v^2} = \frac{4}{(A-4)}\left(\frac{V}{v}\right)^2 = \frac{4}{(A-4)}\left(\frac{A-4}{4}\right)^2 = \frac{A-4}{4} = \frac{1}{4}A - 1$                                                                                                |
|   | (b) | (i)  | Energy released                                                                                                                                                                                                                                                                                       |
|   |     |      | = (change in mass) $c^2$                                                                                                                                                                                                                                                                              |
|   |     |      | = (mass of parent nucleus - mass of daughter nucleus - mass of alpha particle) $c^2$                                                                                                                                                                                                                  |
|   |     |      | = (211.9459 - 207.9374 - 4.0015)u c <sup>2</sup>                                                                                                                                                                                                                                                      |

|     |      | $= 0.007 (1.66 \times 10^{-27}) (3.00 \times 10^{8})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | $= 1.0458 \times 10^{-12} \text{ J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |      | = 6.54 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | (ii) | Energy is released as kinetic energy of the daughter nucleus and the alpha particle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |      | KE of daughter nucleus + KE of alpha particle = 6.54 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |      | KE of daughter nucleus = 6.54 MeV - KE of alpha particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |      | From (a)(ii),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |      | $\frac{KE \text{ of alpha}}{KE \text{ of daughter}} = \frac{1}{4}A - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |      | <u>KE of alpha</u> = $\frac{1}{2}(212) - 1 = 52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |      | 6.54 MeV - KE of alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |      | KE of $alpha = 340.08 - 52(KE of alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |      | 53(RE of alpha) = 340.00<br>KE of alpha = 6.42 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (c) | (i)  | Part of the energy released in the reaction may be in the form of gamma ray photon.<br>Thus the kinetic energy of the products will be less.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | (ii) | The gamma ray photon released has momentum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |      | The emission of the gamma ray photon is in a random direction. Apart from the scenario where the gamma ray photon is released in the same direction as the velocity of either the thallium nucleus or the alpha particle, the velocity of the thallium nucleus and alpha particle will not be in opposite directions if the total momentum is kept constant at zero.                                                                                                                                                                                                                                      |
| (d) | (i)  | $t_{1/2} = (\ln 2) / \lambda = (\ln 2) / (1.9 \times 10^{-4}) = 3600 \text{ s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | (ii) | 2 hours = $2 \times 3600 \text{ s} = 2$ half-lives<br>Hence the number of bismuth-212 nuclei decrease to ¼ of its initial number.<br>Each bismuth-212 nucleus decays into a thallium-208 nucleus. Hence it is expected<br>that the total number of thallium-208 nuclei formed is (N – ¼ N = ¾ N).<br>However, the thallium-208 nucleus is itself unstable and will decay to form another<br>more stable daughter nucleus. Since thallium-208 nucleus has a relatively short half-life<br>of $3.7 \times 10^{-3}$ s, hence the number of thallium-208 nuclei in the sample would be much<br>less than ¾ N. |
|     |      | Examiner's report:<br>Candidates were asked to explain these observations. Many did not attempt to explain<br>why the number of bismuth nuclei would be reduced to approximately ¼N.<br>Many had the misconception that rate of disintegration of the thallium would be greater<br>than that of the bismuth.                                                                                                                                                                                                                                                                                              |