2009 A-LEVEL H1 CHEMISTRY (8872) PAPER 1: MCQ SUGGESTED ANSWERS

Q	Ans	Q	Ans	Q	Ans
1	В	11	D	21	D
2	D	12	С	22	В
3	Α	13	В	23	С
4	С	14	Α	24	В
5	С	15	В	25	С
6	D	16	В	26	Α
7	В	17	В	27	В
8	С	18	С	28	В
9	D	19	Α	29	С
10	Α	20	D	30	В

Section A

1 Mr of $C_6H_{12}O_6 = 6x12.0 + 12x1.0 + 6x16.0$ = 180.0

$${}^{n}C_{6}H_{12}O_{6} = \frac{18}{180.0} = 0.100$$
mol

 n C = 0.100 x 6 = 0.600mol

No. of atoms of C = $0.600 \times 6.02 \times 10^{23}$

= 3.6 x 10²³ atoms

Ans: B

There is a big jump in IE from 4th e⁻ to 5th e⁻
 → 4e⁻ in outermost shell.

∴ M is in Group IV → M is Silicon.

Note: There is a small jump in IE from 2^{nd} e to 3^{rd} e \rightarrow ns^2np^2 .

Ans: D

3 O.N. of La in La_2O_3 is +3.

No. of e^{-1} in $^{139}_{57}$ La = 57

No. of e^{-1} in $^{139}_{57}$ La³⁺ = <u>54</u>

Ans: A

4 There are 4 single bonds (4σ) and 1 double bond $(1\sigma + 1\pi)$. Each covalent bond is made up of $2e^{-}$.

∴ σ (**10e**-) and π (**2e**-)

Ans: C

5 Angle P is 109° as it is tetrahedral abt C. (4bp. 0lp)

Angle Q is 105° as it is bent abt O. (2bp, 2lp)

Ans: C

A Graphite has weak dispersion forces between its layers, ∴ they can slide easily
 → not as strong as diamond

C Graphite has strong covalent bonds within each layer → not easily deformed

B & D Only 3e⁻ are used per C for bonding, hence each C contributes 1e⁻. These e⁻s are delocalised along the plane of C atoms and act as mobile charge carriers to conduct electricity.

Ans: D

7 A simple molecule would have a low m.p, hence Options C & D are eliminated. To be a solid at r.t., the m.p. must be higher than 25°C, hence Option A is eliminated. In addition, solid at r.t. means that it is likely to have a large Mr and no. of e⁻, ∴ molecules are generally held by strong dispersion forces. → high solubility in non-polar solvents, like CCl₄ and low solubility in polar solvents, like H₂O.

Ans: B

8 Lattice Energy $\propto \left| \frac{q^+ \cdot q^-}{r_+ + r_-} \right|$

Since ions in both LiI and LiF have the same charges and $r_{\text{I-}} > r_{\text{F-}}, \; |\text{LE}(\text{LiI})| < |\text{LE}(\text{LiF})|.$

Since ions in both MgF₂ and SrF₂ have the same charges and $r_{Sr2+} > r_{Mg2+} |LE(SrF_2)| < |LE(MgF_2)|$.

Since charge is the predominant factor, MgF_2 and SrF_2 have numerically larger |LE| than LiI and LiF as the product of their charges is larger (2x1=2).

Increasing |LE|: LiI, LiF, SrF₂, MgF₂

Ans: C

9 Since there is no change in O.N. of Cu, Cu in CuFeS₂ has O.N. +2. Fe in CuFeS₂ is oxidised from +2 to +3 in Fe³+. ∴ O.N. of S in CuFeS₂ = -2. O.N. of S in SO₄²- = +6. → ΔO.N.(Fe) = +1, ΔO.N.(S) = +8.

Ans: D

10 $K_w = [H^+][OH^-] = 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ ([H₂O] is excluded from the expression as H₂O is in large excess.)

Ans: A

11 To increase the proportion of products means to favour the forward reaction.

When $P\downarrow$, the system tries to $\uparrow P$ by favouring the side with more moles of gases (Option **B** & **D**).

When $T\uparrow$, the system tries to absorb excess heat by favouring the endothermic reaction (Option **A** & **D**).

Ans: D

12 A H₂NSO₃H and H₂NSO₃⁻ is a conjugate acid-base

pair as they differ by one H⁺.

- **B** acid + carbonate \rightarrow salt(aq) + H₂O(l) + CO₂ (g)
- **C** For strong acids, $[H^{+}]$ is relatively high. $\uparrow K_{a} = \frac{[H_{2}NSO_{3}^{-}][H^{+}] \uparrow}{[H_{2}NSO_{3}H]} \text{ will } \text{be relatively}$
- **D** $[H_2NSO_3^-] = [H^+] = 10^{-1} \text{ mol dm}^{-3}$ pH = $-\lg(10^{-1}) = \underline{1}$

Ans: C

13 Rate = $k[H_2][NO]^2$ Unit of rate = mol dm⁻³ s⁻¹ Unit for $k = \frac{\text{mol dm}^{-3}\text{s}^{-1}}{(\text{mol dm}^{-3})^3} = \text{mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$

Ans : B

14 First order w.r.t N_2O_5 \rightarrow Rate = $k[N_2O_5]$; constant $t_{1/2}$

Fraction of N₂O₅ left after 34 min

$$= \frac{0.025}{0.10} = \frac{1}{4}$$

 $t_{1/2} = 17 \text{ min}$

A At the end of the rxn, 0.20 mol of NO₂ is formed.

Fraction of NO₂ formed in 17 min (one $t_{1/2}$) = $\frac{1}{2}$ x 0.20 = 0.10 mol \Rightarrow True

- **B** Fraction of N₂O₅ left after 17 min (one $t_{1/2}$) = $\frac{1}{2}$ x 0.10 = 0.05 \neq 0.0625 \Longrightarrow False
- C Fraction of N₂O₅ left = $\frac{0.0125}{0.10} = \frac{1}{8}$. This requires 3 t_{1/2} = 3 x 17 = 51 min → False

D At the end of the rxn, 0.20 mol of NO_2 is formed. After 34 min (2 $t_{1/2}$), 0.15 mol of NO_2 is formed.

Fraction of NO₂ formed is $\frac{0.15}{0.20} = \frac{3}{4}$ of the final amount of NO₂ formed. \rightarrow False **Ans: A**

15 Acidic chlorides are usually covalent chlorides. The white ppt is an insoluble hydroxide which is amphoteric. ∴ Element X is A/ which is found in Group III.

 $[A/(H_2O)_6]^{3+} + H_2O \implies [A/(H_2O)_6OH]^{2+} + H_3O^{+}$

(acidic)

 A/Cl_3 + 3NaOH \rightarrow $A/(OH)_3$ (white ppt) + 3NaC/

 $A/(OH)_3$ + NaOH \rightarrow NaA/(OH)₄ (amphoteric) 2A/(OH)₃ + 3H₂SO₄ \rightarrow A/₂(SO₄)₃ + 6H₂O Ans: B

16 Na₂O is made up of a metal and non-metal, hence it has ionic bonding, confirmed by the high m.p.

 SiO_2 , P_4O_{10} and SO_3 are made up of nonmetals, hence they have covalent bonding. Since m.p. is very high for SiO_2 , it has a giant molecular structure.

Since m.p. of P_4O_{10} and SO_3 are low, they have simple molecular structures.

Ans: B

- **17 A** SiCl₄ has a simple molecular structure, hence GeCl₄ cannot be an ionic compound.
 - **B** Covalent chlorides react with water to form an acidic solution. $SiCl_4 + H_2O \rightarrow Si(OH)_4 + 4HCl$
 - C There are no mobile charge carriers in simple molecules SiC/₄ to conduct electricity.
 - There are 4 bp and 0 lp in SiC/₄
 → Tetrahedral; bond angle = 109.5°

Ans: B

18 Hybridisation of C atoms changes as follows:

 $sp \xrightarrow{A} sp^2 \xrightarrow{B} sp^3 \xrightarrow{C} sp^2 \xrightarrow{D} sp^3$

Ans: C

19 All three C=C have two similar groups directly attached to the same doubly bonded C, hence none of them can exhibit geometric isomerism.

Ans: A

20 2Fe + 3Br₂ → 2FeBr₃ → acts as Lewis acid catalyst for ring substitution rxn

No uv light/heat \rightarrow No substitution at the side chain

Only Option $\bf D$ does not have side chain substitution of Br and since CH_3 is an o,p-director, Option $\bf D$ is correct as the Br is directed to the ortho and para positions respectively in the 2 main products.

Ans: D

- 21 A No rxn, as benzene is rather unreactive. Ring substitution requires a Lewis acid catalyst.
 - **B** Ring substitution requires a Lewis acid catalyst, while side chain substitution requires *uv* light/ heat.
 - **C** Substitution of OH can occur with PBr₃, reflux, instead of Br₂.
 - **D** Addition of Br₂ across the C=C is the fastest as it can occur at r.t. in an organic solvent, like CCl₄.

Ans: D

22 From the Data Booklet,

BE(C-C) = 350 kJ mol⁻¹

 $BE(C-Cl) = 340 \text{ kJ mol}^{-1}$ $BE(C-H) = 410 \text{ kJ mol}^{-1}$

BE(C-F) is not given, however, C-F bond is a strong bond as C and F are from the same period, there is good 2p-orbital overlap. Moreover, F being highly electronegative causes additional attraction b/w the partial charges δ + and δ - on C and F respectively.

Ans: B

23 C₄H₆O₂ reacts with HCN & NaCN(aq) to undergo addition reaction on C=O to form cyanohydrin. Since there is an increase of 2C, 2N and 2H in the pdt, C₆H₈N₂O₂ → two C=O groups are present in **X**, ∴ Options **A** & **B** are eliminated.

No brick red ppt with Fehling's solution → absence of aliphatic aldehyde, ∴Option **D** is eliminated.

Reduction of $C_4H_6O_2$ results in the addition of 4H in $C_4H_{10}O_2$ \Rightarrow presence of two oxidising groups. In Option \mathbf{C} , both ketone functional groups can be reduced to 2° alcohols by addition of 4H.

Ans: C

24 Presence of H_3C or H_3C or H_3C or H_3C gives yellow ppt, CHI $_3$ when warmed with $I_2/OH^-(aq)$. \therefore To distinguish b/w the pair, one must give a +ve iodoform test, while the other -ve.

Ans: B

25 CH₃CH₂COOH

CORGHESO CHAMH2OH

CH₃CH₂COOCH₂CH₃ + H₂O ethyl propanoate

The procedure failed as he did not use c.H₂SO₄ catalyst but used a little c.NaOH.

Ans: C

Section B

26 3 $\Delta H_{rxn1} = \sum \Delta H_{f}(pdt) - \sum \Delta H_{f}(rxt)$ = [82+2(-286)] - [-366]= $-124 \text{ kJ mol}^{-1} \implies \text{Rxn 1 is}$ exothermic.

2 $\Delta H_{rxn2} = \sum \Delta H_f(pdt) - \sum \Delta H_f(rxt)$

= $[2(-286)] - [-366] = \underline{-206 \text{ kJ mol}}^{-1}$

1 $\Delta H_{rxn2} - \Delta H_{rxn1} = -206 - (-124)$ = -82 kJ mol⁻¹

→ Rxn 2 gives off 82 kJ mol⁻¹ > En than Rxn 1

Ans: A (1, 2 and 3)

- **27 1** Initially, there is no *R* and it is only formed <u>slowly</u> by the 1st step. ∴ If there is addition of *R* at the start, then rate of formation of *S* in the 2nd step will increase.
 - 2 By conservation of mass,

R = P + Q ----(1)

R + P = 2S ---(2)

Rearranging (2): $S = \frac{1}{2}(P + R)$ Substitute (1) into (2): $= \frac{1}{2}(2P + Q)$ $= P + \frac{1}{2}Q$

8872/01/O/N/09

 \rightarrow Mr(S) is always > Mr(P)

3 1 mole of R reacts to give 2 moles of S. Moreover, the 2nd step is a faster step, leading to a faster formation of S than the production of R. ∴ [S] is always > [R].

Ans: B (1 and 2)

- 28 1 Ne has less inner shell e s, hence the valence e s are less well-shielded than those of Xe. ∴ the valence e s are held more tightly to the nucleus, leading to the unreactive nature of Ne.
 - 2 Down the group, the nuclear charge↑, shielding effect↑. Since shielding effect is the predominant factor, effective nuclear charge down the group ↓, leading to larger atomic size and lower IE. Less energy is required to remove an e⁻ from Xe than Ne, hence Ne is less reactive than Xe.
 - 3 True statement, however it does not explain why Ne is less reactive than Xe. Ans: B (1 and 2)
- 29 Aldehyde can be oxidised to carboxylic acid with mild O.A. Aldehyde cannot form esters or react with sodium.

 Both carboxylic acids and 3° alcohols

cannot be oxidised further with mild O.A. Carboxylic acids can react with 3° alcohols to form esters. Both carboxylic acids and 3° alcohols react with Na to form a salt via acid-metal rxn.

Ans: C (2 and 3)

30 1
$$CH_3$$
 $COO H$ $+ 3[O] \rightarrow O$ $+ H_2O$

NaOH Δ

COO Na[‡]
 $+ 2NaOH \rightarrow$

© VJC 2010

Ans: B (1 and 2)