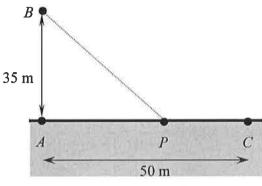
1 Without the use of a calculator, solve the inequality $\frac{5x}{x-2} \ge 3$. Hence, find the range of values of x

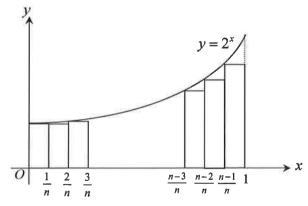
that satisfy
$$\frac{5|x|}{|x|-2} \ge 3$$
. [5]

2



In the above diagram, not drawn to scale, a man in a boat at B is 35 m from A, the nearest point on a straight shore AC. He intends to disembark from his boat at the point P and runs along the shore to point C which is 50 m from A. He can row at $3 \,\mathrm{m \, s^{-1}}$ and run at $4 \,\mathrm{m \, s^{-1}}$ along straight paths.

- (i) If x denote the distance, in metres, between A and P, and t denote the total time, in seconds, required to travel from B to C, show that $t = \frac{\sqrt{1225 + x^2}}{3} + \frac{50 x}{4}$. [2]
- (ii) Find the exact value of x such that the man is able to travel from B to C in the shortest possible time. You may assume that the time taken to disembark from the boat is negligible.
- 3 The graph of $y = 2^x$ for $0 \le x \le 1$, is shown in the diagram below. Rectangles, each of width $\frac{1}{n}$, where n is an integer are drawn under the curve.



- (i) Show that the total area of all the *n* rectangles is $\frac{1}{n(2^{\frac{1}{n}}-1)}$. [2]
- (ii) By considering the area of the region bounded by the curve $y = 2^x$, x = 1 and the axes, briefly explain why $\ln 2 < n(2^{\frac{1}{n}} 1)$. [3]

4 Two functions f and g are defined by

$$f: x \mapsto x^2 + 2x,$$
 $x \le 0;$
 $g: x \mapsto -\ln(2+x),$ $x \ge 0.$

- (i) Give a reason why the inverse of f does not exist. [1]
- (ii) Only one of the functions fg and gf exists. Determine which one of them exists, and state its rule, domain and range. Explain why the other does not exist. [5]
- The points A and B relative to the origin O have position vectors $\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$ and $-4\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ respectively. The point P lies on line AB such that $\frac{AP}{PB} = \frac{\lambda}{1-\lambda}$.

(i) Show that
$$\overrightarrow{OP} = (1-5\lambda)\mathbf{i} + (2+3\lambda)\mathbf{j} + (4\lambda-2)\mathbf{k}$$
. [1]

- (ii) Given further that C is a point with position vector $-5\mathbf{i} + 16\mathbf{j} 2\mathbf{k}$ and that $\overrightarrow{OP} = \mu \overrightarrow{OC}$, show that $\mu = \frac{1}{5}$ and find the value of λ .
- (iii) Hence, or otherwise, determine the area of triangle *OAP*, leaving your answer correct to 3 decimal places. [2]
- 6 (i) The set of points P in an Argand diagram represents the complex number z that satisfies |z-2-i|=2. Sketch the locus of P. [1]
 - (ii) The set of points Q represents another complex number w given by $arg(w-2+3i) = \theta$ where $-\pi < \theta \le \pi$. Give a geometrical description of the locus of Q. [1]
 - (a) Find the range of values of θ such that the locus of Q meets the locus of P more than once. [2]
 - (b) In the case where $\theta = \tan^{-1} \left(\frac{3}{4} \right)$, find the least value of |z w| in exact form. [3]
- The number of Bye-Bye Panda due to birth and death in a protected bamboo environment is modelled by the differential equation $\frac{dS}{dt} = kS(k-S)$ where S is the number of pandas at time t years and k is a constant. Given that k > S, show that the differential equation has general solution $S = \frac{kA}{A + e^{-k^2t}}, \text{ where } A \text{ is an arbitrary constant.}$

Hence, find the limiting value of the number of Bye-Bye Panda in the bamboo environment and explain the significance of k. [2]

8 The sequence u_n is defined by the recurrence relation

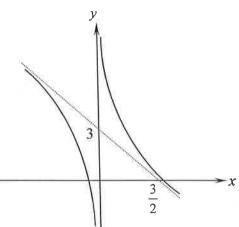
$$u_1 = 1$$
 and $u_{n+1} = \frac{u_n}{u_n + 2}$ for $n \ge 1$.

- (i) Write down the values of u_2 , u_3 and u_4 . Hence, make a conjecture for u_n in terms of n. [2]
- (ii) Use mathematical induction to prove that your conjecture is true for all positive integers n. [5]
- Damian deposits P dollars in POSD bank at the beginning of a year. The deposit earns an interest rate of x% per annum compounded annually. At the end of each year, $\frac{1}{3}$ of the amount in the account (including principal and interest) is withdrawn and the remainder is re-deposited at the same rate. Let u_n denote the amount of money withdrawn at the end of the n^{th} year.
 - (i) Express u_1 and u_2 in terms P and x and hence show that $u_3 = \frac{4}{27}P\left(1 + \frac{x}{100}\right)^3$. [3]
 - (ii) Given that u_1 , u_2 , u_3 , ... form a geometric progression, find the common ratio in terms of x.
 - (iii) Suppose $u_3 = \frac{27}{128}P$, find the value of x. Given further that P = 5000, find the total amount of money withdrawn at the end of the first 5 years. Give your answer correct to the nearest integer. [4]
- A line l is given by the equation $\mathbf{r} = 2\mathbf{i} + \mathbf{k} + \lambda (\mathbf{i} + 2\mathbf{j} 3\mathbf{k}), \ \lambda \in \mathbb{R}$ and the point P has position vector $2\mathbf{i} \mathbf{j} 3\mathbf{k}$ relative to the origin. N is a point on l such that the line PN is perpendicular to l.

(i) Show that
$$\overrightarrow{PN} = \frac{1}{7} (5\mathbf{i} + 17\mathbf{j} + 13\mathbf{k})$$
. [2]

- (ii) The plane Π_1 has equation $\mathbf{r} \cdot (3\mathbf{i} + \mathbf{k}) = 7$. Verify that l lies in Π_1 and find the perpendicular distance from point P to Π_1 .
- (iii) A second plane Π_2 contains l and P. Using your answers above, or otherwise, determine the acute angle between Π_1 and Π_2 . [2]
- (iv) A third plane Π_3 has equation $\mathbf{r} \cdot (-\mathbf{j} + 5\mathbf{k}) = 22$. Determine the position vector of the point of intersection between planes Π_1 , Π_2 and Π_3 . [2]

11



The diagram above shows the graph of the function y = f(x) where $f(x) = \frac{ax^2 + bx + c + 1}{x + d}$, $a, b, c, d \in \mathbb{R}$. The oblique asymptote intersects the axes at $x = \frac{3}{2}$ and y = 3. Find the values of a, b

and d. By considering $\frac{dy}{dx}$, show that c > -1. [5]

Sketch, on separate diagrams, the graphs of

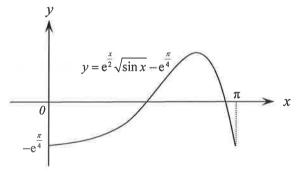
(i)
$$y = f'(x)$$
; [3]

(ii)
$$y = \frac{4ax^2 - 2bx + c + 1}{d - 2x}$$
, [3]

indicating clearly any asymptotes.

12 (i) Use integration by parts to show that $\int e^x \sin x \, dx = \frac{e^x}{2} (\sin x - \cos x) + c$, where c is an arbitrary constant. [4]

(ii)



The diagram above shows the graphs of a curve C given by $y = e^{\frac{x}{2}} \sqrt{\sin x} - e^{\frac{\pi}{4}}$ for $0 \le x \le \pi$.

- (a) The region R is bounded by the x-axis and the part of C between x = 0 and $x = \frac{5}{2}$. Find, correct to 3 significant figures, the area of region R. [4]
- (b) The region S is bounded by C and the line $y = -e^{\frac{\pi}{4}}$. Write down the equation of the curve obtained when C is translated $e^{\frac{\pi}{4}}$ units in the positive y-direction. Hence, show that the volume V of the solid formed when S is rotated 2π radians about the line $y = -e^{\frac{\pi}{4}}$ is given by $V = a(e^{\pi} + b)$, where a and b are exact constants to be determined. [3]

Turn over

13 (a) The complex numbers z_1 and z_2 satisfy the equation $\frac{4}{z} - z = 2i$. Given that $\text{Re}(z_1) > \text{Re}(z_2)$, find z_1 in the form x + iy, where x and y are exact real constants to be determined.

By expressing z_1 in polar form, or otherwise, find the least possible positive integer n such that $(z_1)^n$ is real. [3]

- **(b)** (i) Show that $1 + e^{i\alpha} = 2\cos\left(\frac{\alpha}{2}\right)e^{i\left(\frac{\alpha}{2}\right)}$ for all $\alpha \in \mathbb{R}$. [2]
 - (ii) Find the fourth roots of the complex number $8\sqrt{2} (8\sqrt{2})i$. [2]
 - (iii) By solving the equation $(w-2)^4 = 8\sqrt{2} \left(8\sqrt{2}\right)i$, prove that $4\cos\left(-\frac{9\pi}{32}\right)e^{i\left(\frac{-9\pi}{32}\right)}$ is a root to the equation and find the other roots, leaving your answers in similar form. [3]

***** END OF PAPER 1 *****